今天遇到一件事情,很不开心,于是决定分析一下Looper的实现。

Looper 代码其实不多,只是用到了一些外部不能使用的类,然而代码难度也不是很大。下面且听我细细分析。

重点关注一下我们会使用的方法,比如Looper.prepare(); Looper.loop();

好的,先看一个prepare():

     /** Initialize the current thread as a looper.      * This gives you a chance to create handlers that then reference      * this looper, before actually starting the loop. Be sure to call      * {@link #loop()} after calling this method, and end it by calling      * {@link #quit()}.      */    public static void prepare() {        prepare(true);    }    private static void prepare(boolean quitAllowed) {        if (sThreadLocal.get() != null) {            throw new RuntimeException("Only one Looper may be created per thread");        }        sThreadLocal.set(new Looper(quitAllowed));    }

可以看到实际上是调用了一个私有方法,那就看这个私有方法吧。这个私有方法做了什么?

首先是判断sThreadLocal里面是不是已经有Looper对象了,没有就创建并存储到该对象中;有就抛异常,简单粗暴。

关于ThreadLocal,可以看一下 Java并发编程:深入剖析ThreadLocal 这里的分析。

我大致说一下,就是说一个线程中通过 sThreadLocal来保存的Looper最多只有一个。辣么,这个就说明,Looper在任何线程中最多只有一个对象。

再细看一下,这里通过调用Looper的私有构造去创建了一个Looper对象,而且这个私有构造,也仅仅是在这里被调用过。所以,再次确保,Looper在任何线程中最多只有一个对象。

然后是loop()方法,这个方法比较长:

    /**     * Run the message queue in this thread. Be sure to call     * {@link #quit()} to end the loop.     */    public static void loop() {        final Looper me = myLooper();        if (me == null) {            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");        }        final MessageQueue queue = me.mQueue;        // Make sure the identity of this thread is that of the local process,        // and keep track of what that identity token actually is.        Binder.clearCallingIdentity();        final long ident = Binder.clearCallingIdentity();        for (;;) {            Message msg = queue.next(); // might block            if (msg == null) {                // No message indicates that the message queue is quitting.                return;            }            // This must be in a local variable, in case a UI event sets the logger            final Printer logging = me.mLogging;            if (logging != null) {                logging.println(">>>>> Dispatching to " + msg.target + " " +                        msg.callback + ": " + msg.what);            }            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;            final long traceTag = me.mTraceTag;            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));            }            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();            final long end;            try {                msg.target.dispatchMessage(msg);                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();            } finally {                if (traceTag != 0) {                    Trace.traceEnd(traceTag);                }            }            if (slowDispatchThresholdMs > 0) {                final long time = end - start;                if (time > slowDispatchThresholdMs) {                    Slog.w(TAG, "Dispatch took " + time + "ms on "                            + Thread.currentThread().getName() + ", h=" +                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);                }            }            if (logging != null) {                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);            }            // Make sure that during the course of dispatching the            // identity of the thread wasn't corrupted.            final long newIdent = Binder.clearCallingIdentity();            if (ident != newIdent) {                Log.wtf(TAG, "Thread identity changed from 0x"                        + Long.toHexString(ident) + " to 0x"                        + Long.toHexString(newIdent) + " while dispatching to "                        + msg.target.getClass().getName() + " "                        + msg.callback + " what=" + msg.what);            }            msg.recycleUnchecked();        }    }

从头看:

final Looper me = myLooper();if (me == null) {    throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");}

这里可以看到,会先看看当前有没有 Looper对象,如果没有就抛异常。这里也就可以看到,如果在自己的代码中,如果没有先执行Looper.prepare();就调用Looper.loop();的话就会抛异常。

然后的逻辑就是遍历当前LooperMessageQueue,取出里面的每个Message对象,都去调用msg.target.dispatchMessage(msg);以及msg.recycleUnchecked();所有的Message对象都取出来了,就跳出循环了。这中间还打印了各种log,不过这些不是关键了。

至于其中的Binder.clearCallingIdentity()可以看看 android IPC通信中的UID和PID识别 ,不过与整体逻辑的分析没有什么影响。

总结:

  1. Looper要想实例化,必须调用prepare()或者prepareMainLooper()
  2. 调用Looper.loop()之前必须先实例化Looper对象。
  3. 每个线程之会有最多一个Looper对象。
  4. Looperloop()方法会取出MessageQueue中的全部Message对象,然后把消息分发出去。

本来准备说一下MessageQueue的,但是里面太多native方法了,就不想去看了。那就说一下Message。其实Message还是比较简单的,是一个实现了Parcelable接口的对象。

Message 提供了一个空构造,这个很好,非常容易理解和使用。public Message() {},但是这上面注释明确说了,更建议使用obtaion()方法。

/**     * Return a new Message instance from the global pool. Allows us to     * avoid allocating new objects in many cases.     */    public static Message obtain() {        synchronized (sPoolSync) {            if (sPool != null) {                Message m = sPool;                sPool = m.next;                m.next = null;                m.flags = 0; // clear in-use flag                sPoolSize--;                return m;            }        }        return new Message();    }

可以看出 obtain()和构造方法没有什么本质的区别,主要是弄了一个静态变量sPool作为缓存。

然后看一下,Message有一个next字段,这个很有意思,很像那种单链表结构。有一个指针域,指向下一个。

然后Message有多个obtain()重载方法,但是实现都差不多。

    /**     * Same as {@link #obtain()}, but copies the values of an existing     * message (including its target) into the new one.     * @param orig Original message to copy.     * @return A Message object from the global pool.     */    public static Message obtain(Message orig) {        Message m = obtain();        m.what = orig.what;        m.arg1 = orig.arg1;        m.arg2 = orig.arg2;        m.obj = orig.obj;        m.replyTo = orig.replyTo;        m.sendingUid = orig.sendingUid;        if (orig.data != null) {            m.data = new Bundle(orig.data);        }        m.target = orig.target;        m.callback = orig.callback;        return m;    }
    /**     * Same as {@link #obtain()}, but sets the value for the target member on the Message returned.     * @param h  Handler to assign to the returned Message object's target member.     * @return A Message object from the global pool.     */    public static Message obtain(Handler h) {        Message m = obtain();        m.target = h;        return m;    }    /**     * Same as {@link #obtain(Handler)}, but assigns a callback Runnable on     * the Message that is returned.     * @param h  Handler to assign to the returned Message object's target member.     * @param callback Runnable that will execute when the message is handled.     * @return A Message object from the global pool.     */    public static Message obtain(Handler h, Runnable callback) {        Message m = obtain();        m.target = h;        m.callback = callback;        return m;    }    /**     * Same as {@link #obtain()}, but sets the values for both target and     * what members on the Message.     * @param h  Value to assign to the target member.     * @param what  Value to assign to the what member.     * @return A Message object from the global pool.     */    public static Message obtain(Handler h, int what) {        Message m = obtain();        m.target = h;        m.what = what;        return m;    }

大体都是一样的,只是有参数的obtain(args);就会把参数赋值给成员变量。

然后看一下其中的一个recycle()方法,看看里面到底做了什么?

/**     * Return a Message instance to the global pool.     * 

* You MUST NOT touch the Message after calling this function because it has * effectively been freed. It is an error to recycle a message that is currently * enqueued or that is in the process of being delivered to a Handler. *

*/
public void recycle() { if (isInUse()) { if (gCheckRecycle) { throw new IllegalStateException("This message cannot be recycled because it " + "is still in use."); } return; } recycleUnchecked(); } /** * Recycles a Message that may be in-use. * Used internally by the MessageQueue and Looper when disposing of queued Messages. */ void recycleUnchecked() { // Mark the message as in use while it remains in the recycled object pool. // Clear out all other details. flags = FLAG_IN_USE; what = 0; arg1 = 0; arg2 = 0; obj = null; replyTo = null; sendingUid = -1; when = 0; target = null; callback = null; data = null; synchronized (sPoolSync) { if (sPoolSize < MAX_POOL_SIZE) { next = sPool; sPool = this; sPoolSize++; } } }

可以看到这里把所有的成员变量全部置空了,然后把next设置为sPool,然后把sPool设置为this了。

那么,sPool是什么呢?

obtain()里面可以看到:

 public static Message obtain() {        synchronized (sPoolSync) {            if (sPool != null) {                Message m = sPool;                sPool = m.next;                m.next = null;                m.flags = 0; // clear in-use flag                sPoolSize--;                return m;            }        }        return new Message();    }

但是第一个调用obtain()肯定不会走if的逻辑,那么此时,sPool=null,而且 sPool是私有的,所有sPool的赋值只能发生在recycleUnchecked()这里了,这里赋值肯定不会为空,肯定是一个实实在在的 Message对象了。那么下次obtain()的时候,就会走if逻辑了。这时候,就是返回上次保存在sPool中的对象了,这个对象其实也就是当前对象this

这里也可以看出obtain()和一般单例模式的对象获取是不同的,并不是第一个new,第二次用之前的;而是非要等调用过recycle()之后,才能真的实现复用。

然后看一下sendToTarget()

    /**     * Sends this Message to the Handler specified by {@link #getTarget}.     * Throws a null pointer exception if this field has not been set.     */    public void sendToTarget() {        target.sendMessage(this);    }

这个方法也是很有用的,平常使用中就会用到这个的。但是实现很简单,就是调用HandlersendMessage(msg)方法。这里也可以看出,如果之前不是通过obtain(Handler h,xxx)来创建Message对象的,或者之前没有主动调用过setTarget(handler),那么这个方法就会出现空指针异常。

大体上就说这些吧,关于与MessageQueue结合的部分,后续应该会看。

更多相关文章

  1. Android更新UI的四种方法详解
  2. Android学习笔记之一 Activity的生命周期
  3. android view setTag()和findViewWithTag()
  4. Android读取本地或者网络图片的方法
  5. Android基础之通过 Intent 传递类对象
  6. android Service--服务 .
  7. 安卓开发过程中遇到的问题总结及解决方法
  8. Android菜鸟日记20 - ListView
  9. Android(安卓)AsyncTask基础知识整理

随机推荐

  1. Android 多线程下载文件原理霸气解析介绍
  2. Jsp以get方式提交中文及特殊字符,javascri
  3. javascript实现设置select下拉列表框中选
  4. [零基础学JAVA]Java SE面向对象部分.面向
  5. Android Asyntask:对上下文使用弱引用以避
  6. Java8 新特性之流式数据处理
  7. 牛客网Java刷题知识点之同步方法和同步代
  8. JavaScript笔记:混合对象“类”
  9. Java之封装特性
  10. 如何在一个套件中执行多个测试用例时,一次