Android异步消息机制-深入理解Handler、Looper和MessageQueue之间的关系

相信做安卓的很多人都遇到过这方面的问题,什么是异步消息机制,什么又是HandlerLooperMessageQueue,它们之间又有什么关系?它们是如何协作来保证安卓app的正常运行?它们在开发中具体的使用场景是怎样的?今天,就让我们来揭开这几个Android异步消息机制中重要角色的神秘面纱。

一、写在前面

为什么要学习Android异步消息机制?和AMS、WMS、View体系一样,异步消息机制是Android framework层非常重要的知识点,掌握了对于日常开发、问题定位和解决都是非常有帮助的,会使的我们开发事半功倍。而要想成为一个合格的Android开发人员,光是懂得调用Android提供的那些个api是不够的,还要学会分析这些api背后的原理,知道它们是如果工作的,做到知其然亦知其所以然,如果不去学习技术背后的原理,只流于表面,这样永远都不会有进步,永远都只是一个Android菜鸟。

二、源码分析

1、主线程创建Looper

Android中主线程也就是我们所说的UI线程,可以简单理解为所有的界面呈现,能看得到的操作,所有的触摸、点击屏幕、更新界面UI事件的处理,都是在主线程中完成的。一个线程只有一条执行路径,如果主线程同时有多个事件要处理,那么是怎么做到有条不紊地处理的呢?接下来,以上提到的几个角色就要登场了,就是Handler+Looper+MessageQueue这三个角色在起作用。

Looper是线程的消息轮询器,是整个消息机制的核心,来看看主线程的Looper是如何创建的。

主线程开启于 ActivityThreadmain 方法中,来看一下 main 方法的源码。

public static void main(String[] args) {        、、、        // Make sure TrustedCertificateStore looks in the right place for CA certificates        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());        TrustedCertificateStore.setDefaultUserDirectory(configDir);        Process.setArgV0("");        Looper.prepareMainLooper();        ActivityThread thread = new ActivityThread();        thread.attach(false);        if (sMainThreadHandler == null) {            sMainThreadHandler = thread.getHandler();        }        、、、    }

Looper.prepareMainLooper() 这句代码似乎为主线程创建 Looper,进入方法内部一探究竟。

public static void prepareMainLooper() {        prepare(false);        synchronized (Looper.class) {            if (sMainLooper != null) {                throw new IllegalStateException("The main Looper has already been prepared.");            }            sMainLooper = myLooper();        }    }    private static void prepare(boolean quitAllowed) {        if (sThreadLocal.get() != null) {            throw new RuntimeException("Only one Looper may be created per thread");        }        sThreadLocal.set(new Looper(quitAllowed));    }

果然在这个方法内部又调用 Looper.prepare(boolean) 方法为主线程创建 Looper 对象,存储在 ThreadLocal 中,我们都知道,ThreadLocal 为每个线程创建一个副本,所以不同线程 set 的值不会被覆盖,再次取出值时对应的是该线程 set 进去的值。接下来通过 Looper.myLooper() 拿到主线程的 LooperLooper 的静态变量sMainLooper持有,之后再想取主线程 Looper 通过 Looper.getMainLooper() 拿到

public static Looper getMainLooper() {    synchronized (Looper.class) {        return sMainLooper;    }}

这样,主线程的Looper就创建成功了,需要注意的是,无论是主线程还是子线程,Looper只能被创建一次,否则会抛异常,以上源码可以很好地解释。

2、子线程创建Looper

与主线程稍稍有点不一样,子线程的Looper需要手动去创建,并且有些地方是需要注意的,下面让我们一起来探究一下。

子线程创建Looper标准写法是这样的

new Thread(new Runnable() {            @Override            public void run() {                //创建子线程的Looper                Looper.prepare();                //开启消息轮询                Looper.loop();            }        }).start();

需要先创建子线程的Looper再开启消息轮询,否则Looper.loop()中会抛RuntimeException

public static void loop() {        final Looper me = myLooper();        if (me == null) {            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");        }        、、、    }

这样,主线程和子线程的Looper创建过程我们都知道了,有了Looper,我们就能开启消息轮询了吗?不能,因为Looper只是消息轮询器,就好比大厨,还需要食材才能烹饪,因此要想开启消息轮询,还需要消息的仓库,消息队列MessageQueue

3、MessageQueue的创建

我们看看Looper的私有构造方法

private Looper(boolean quitAllowed) {    mQueue = new MessageQueue(quitAllowed);    mThread = Thread.currentThread();}

可见在每个线程创建Looper的时候也创建了一个MessageQueue,并将MessageQueue对象作为该线程Looper的成员变量,这就是MessageQueue的创建过程。

4、开启消息轮询

有了LooperMessageQueue之后就能开启消息轮询了,非常简单,通过Looper.loop()

/**     * Run the message queue in this thread. Be sure to call     * {@link #quit()} to end the loop.     */    public static void loop() {        final Looper me = myLooper();        if (me == null) {            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");        }        final MessageQueue queue = me.mQueue;        // Make sure the identity of this thread is that of the local process,        // and keep track of what that identity token actually is.        Binder.clearCallingIdentity();        final long ident = Binder.clearCallingIdentity();        for (;;) {            Message msg = queue.next(); // might block            if (msg == null) {                // No message indicates that the message queue is quitting.                return;            }            // This must be in a local variable, in case a UI event sets the logger            final Printer logging = me.mLogging;            if (logging != null) {                logging.println(">>>>> Dispatching to " + msg.target + " " +                        msg.callback + ": " + msg.what);            }            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;            final long traceTag = me.mTraceTag;            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));            }            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();            final long end;            try {                msg.target.dispatchMessage(msg);                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();            } finally {                if (traceTag != 0) {                    Trace.traceEnd(traceTag);                }            }            if (slowDispatchThresholdMs > 0) {                final long time = end - start;                if (time > slowDispatchThresholdMs) {                    Slog.w(TAG, "Dispatch took " + time + "ms on "                            + Thread.currentThread().getName() + ", h=" +                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);                }            }            if (logging != null) {                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);            }            // Make sure that during the course of dispatching the            // identity of the thread wasn't corrupted.            final long newIdent = Binder.clearCallingIdentity();            if (ident != newIdent) {                Log.wtf(TAG, "Thread identity changed from 0x"                        + Long.toHexString(ident) + " to 0x"                        + Long.toHexString(newIdent) + " while dispatching to "                        + msg.target.getClass().getName() + " "                        + msg.callback + " what=" + msg.what);            }            msg.recycleUnchecked();        }    }

在方法中可以看到有一个for(;;)死循环,该循环中又调用了MessageQueuenext()方法 ,进入方法一探究竟。

Message next() {        // Return here if the message loop has already quit and been disposed.        // This can happen if the application tries to restart a looper after quit        // which is not supported.        final long ptr = mPtr;        if (ptr == 0) {            return null;        }        int pendingIdleHandlerCount = -1; // -1 only during first iteration        int nextPollTimeoutMillis = 0;        for (;;) {            if (nextPollTimeoutMillis != 0) {                Binder.flushPendingCommands();            }            nativePollOnce(ptr, nextPollTimeoutMillis);            synchronized (this) {                // Try to retrieve the next message.  Return if found.                final long now = SystemClock.uptimeMillis();                Message prevMsg = null;                Message msg = mMessages;                if (msg != null && msg.target == null) {                    // Stalled by a barrier.  Find the next asynchronous message in the queue.                    do {                        prevMsg = msg;                        msg = msg.next;                    } while (msg != null && !msg.isAsynchronous());                }                if (msg != null) {                    if (now < msg.when) {                        // Next message is not ready.  Set a timeout to wake up when it is ready.                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);                    } else {                        // Got a message.                        mBlocked = false;                        if (prevMsg != null) {                            prevMsg.next = msg.next;                        } else {                            mMessages = msg.next;                        }                        msg.next = null;                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);                        msg.markInUse();                        return msg;                    }                } else {                    // No more messages.                    nextPollTimeoutMillis = -1;                }                // Process the quit message now that all pending messages have been handled.                if (mQuitting) {                    dispose();                    return null;                }                // If first time idle, then get the number of idlers to run.                // Idle handles only run if the queue is empty or if the first message                // in the queue (possibly a barrier) is due to be handled in the future.                if (pendingIdleHandlerCount < 0                        && (mMessages == null || now < mMessages.when)) {                    pendingIdleHandlerCount = mIdleHandlers.size();                }                if (pendingIdleHandlerCount <= 0) {                    // No idle handlers to run.  Loop and wait some more.                    mBlocked = true;                    continue;                }                if (mPendingIdleHandlers == null) {                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];                }                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);            }            // Run the idle handlers.            // We only ever reach this code block during the first iteration.            for (int i = 0; i < pendingIdleHandlerCount; i++) {                final IdleHandler idler = mPendingIdleHandlers[i];                mPendingIdleHandlers[i] = null; // release the reference to the handler                boolean keep = false;                try {                    keep = idler.queueIdle();                } catch (Throwable t) {                    Log.wtf(TAG, "IdleHandler threw exception", t);                }                if (!keep) {                    synchronized (this) {                        mIdleHandlers.remove(idler);                    }                }            }            // Reset the idle handler count to 0 so we do not run them again.            pendingIdleHandlerCount = 0;            // While calling an idle handler, a new message could have been delivered            // so go back and look again for a pending message without waiting.            nextPollTimeoutMillis = 0;        }    }

该方法里面同样有一个for(;;)死循环,当没有可以处理该消息的Handler时,就会一直阻塞

if (pendingIdleHandlerCount <= 0) {    // No idle handlers to run.  Loop and wait some more.    mBlocked = true;    continue;}

如果从MessageQueue中拿到消息,返回Looper.loop()中,loop()有以下片段

try {    msg.target.dispatchMessage(msg);    end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();} finally {    if (traceTag != 0) {        Trace.traceEnd(traceTag);    }

可以很清楚看到Message是用它所绑定的Handler来处理的,调用dispatchMessage(Message),这个Handler其实就是发送MessageMessageQueue时所用的Handler,在发送时绑定了。

Handler拿到消息之后会怎么处理呢,我们暂且搁一边,先来看看Handler是怎么创建并发送消息的

5、创建Handler

可以继承于Handler并重写handleMessage(),实现自己处理消息的逻辑

private static class MyHandler extends Handler {        @Override        public void handleMessage(Message msg) {            super.handleMessage(msg);        }    }

简单地,可以在程序中这样创建

MyHandler handler = new MyHandler();

需要注意的是,线程创建Handler实例之前必须先创建Looper实例,否则会抛RuntimeException

ublic Handler(Callback callback, boolean async) {        if (FIND_POTENTIAL_LEAKS) {            final Class<? extends Handler> klass = getClass();            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&                    (klass.getModifiers() & Modifier.STATIC) == 0) {                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +                    klass.getCanonicalName());            }        }        mLooper = Looper.myLooper();        if (mLooper == null) {            throw new RuntimeException(                "Can't create handler inside thread that has not called Looper.prepare()");        }        mQueue = mLooper.mQueue;        mCallback = callback;        mAsynchronous = async;    }

Handler的消息处理逻辑同样可以通过实现Handler的内部接口Callback来完成

public interface Callback {    public boolean handleMessage(Message msg);}
Handler handler = new Handler(new Callback() {            @Override            public boolean handleMessage(Message msg) {                //处理消息                return true;            }        });

关于这两种处理消息的方式哪个优先级更高,接下来会讲到

6、Handler发送消息

首先可以通过类似以下的代码来创建Message

Message message = Message.obtain();message.arg1 = 1;message.arg2 = 2;message.obj = new Object();

Handler发送消息的方式多种多样,常见有这几种

sendEmptyMessage();           //发送空消息sendEmptyMessageAtTime();     //发送按照指定时间处理的空消息sendEmptyMessageDelayed();    //发送延迟指定时间处理的空消息sendMessage();                //发送一条消息sendMessageAtTime();          //发送按照指定时间处理的消息sendMessageDelayed();         //发送延迟指定时间处理的消息sendMessageAtFrontOfQueue();  //将消息发送到消息队头

也可以在设置Handler之后,通过message自身发送消息,不过最终都是调用Handler发送消息的方法

message.setTarget(handler);message.sendToTarget();public void sendToTarget() {    target.sendMessage(this);}

除此之外,还有一种另类的发送方式

post();postDelayed();postAtTime();postAtFrontOfQueue();

post(Runnable r)为例,此种方式是通过post一个Runnable回调,构造成一个Message并发送

public final boolean post(Runnable r) {   return  sendMessageDelayed(getPostMessage(r), 0);}private static Message getPostMessage(Runnable r) {    Message m = Message.obtain();    m.callback = r;    return m;}

Runnable回调存储在Message的成员变量callback中,callback的作用,接下来会讲到

以上是消息的发送方式,那么消息是如何发送到MessageQueue的呢,再来看

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {    MessageQueue queue = mQueue;    if (queue == null) {        RuntimeException e = new RuntimeException(                this + " sendMessageAtTime() called with no mQueue");        Log.w("Looper", e.getMessage(), e);        return false;    }    return enqueueMessage(queue, msg, uptimeMillis);}private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {    msg.target = this;    if (mAsynchronous) {        msg.setAsynchronous(true);    }    return queue.enqueueMessage(msg, uptimeMillis);}

所有的消息发送方式最终都是调用 HandlersendMessageAtTime(),并且会检查消息队列是否为空,若空则抛 RuntimeException,之后调用 HandlerenqueueMessage() ,最后调用MessageQueueenqueueMessage() 将消息入队。

boolean enqueueMessage(Message msg, long when) {        if (msg.target == null) {            throw new IllegalArgumentException("Message must have a target.");        }        if (msg.isInUse()) {            throw new IllegalStateException(msg + " This message is already in use.");        }        synchronized (this) {            if (mQuitting) {                IllegalStateException e = new IllegalStateException(                        msg.target + " sending message to a Handler on a dead thread");                Log.w(TAG, e.getMessage(), e);                msg.recycle();                return false;            }            msg.markInUse();            msg.when = when;            Message p = mMessages;            boolean needWake;            if (p == null || when == 0 || when < p.when) {                // New head, wake up the event queue if blocked.                msg.next = p;                mMessages = msg;                needWake = mBlocked;            } else {                // Inserted within the middle of the queue.  Usually we don't have to wake                // up the event queue unless there is a barrier at the head of the queue                // and the message is the earliest asynchronous message in the queue.                needWake = mBlocked && p.target == null && msg.isAsynchronous();                Message prev;                for (;;) {                    prev = p;                    p = p.next;                    if (p == null || when < p.when) {                        break;                    }                    if (needWake && p.isAsynchronous()) {                        needWake = false;                    }                }                msg.next = p; // invariant: p == prev.next                prev.next = msg;            }            // We can assume mPtr != 0 because mQuitting is false.            if (needWake) {                nativeWake(mPtr);            }        }        return true;    }

该方法根据消息的处理时间来对消息进行排序,最终确定哪个消息先被处理

至此,我们已经很清楚消息的创建和发送以及消息轮询过程了,最后来看看消息是怎么被处理的

7、消息的处理

回到Looper.loop()中的这一句代码

msg.target.dispatchMessage(msg);

消息被它所绑定的HandlerdispatchMessage()处理了

public void dispatchMessage(Message msg) {        if (msg.callback != null) {            handleCallback(msg);        } else {            if (mCallback != null) {                if (mCallback.handleMessage(msg)) {                    return;                }            }            handleMessage(msg);        }    }

由此可见,消息处理到底采用哪种方式,是有优先级区分的

首先是post方法发送的消息,会调用Message中的callback,也就是Runnablerun()来处理

private static void handleCallback(Message message) {    message.callback.run();}

其次则是看Handler在创建时有没有实现Callback回调接口,若有,则调用

mCallback.handleMessage(msg)

如果该方法没能力处理,则返回false,让给接下来处理

最后才是调用HandlerhandleMessage()

三、总结

  1. 熟悉消息机制几个角色的创建过程,先有Looper,再有MessageQueue,最后才是Handler
  2. 熟悉线程中使用消息机制的正确写法,以及消息的创建和发送。
  3. 一个线程可以有多个Handler,这些Handler无论在哪里发送消息,最终都会在创建其的线程中处理消息,
    这也是能够异步通信的原因。
  4. Android 提供的 AsyncTaskHandlerThread等等都用到了异步消息机制。

最后借用一张图说明Android异步消息机制


Android异步消息机制

四、写在最后

至此,Android 异步消息机制就讲解完毕了,有木有一种醍醐灌顶的感觉,哈哈~~~~,这篇文章涉及到的源码不难,非常好理解,关键还是要自己去阅读源码,理解其原理,做到知其然亦知其所以然,这个道理对于大部分领域的学习都适用吧,要知道,Android发展到现在,技术越来越成熟,早已不是那个写几个界面就能拿高薪的时代了,市场对于Android 工程师的要求越来越高,这也提醒着我们要跟上技术发展的步伐,时刻学习,避免被淘汰。

由于水平有限,文章可能会有不少纰漏,还请读者能够指正,Android SDK 源码的广度和深度也不是小小篇幅能够概括的,未能尽述之处,还请多多包涵。

欢迎关注个人微信公众号:Charming写字的地方
CSDN:http://blog.csdn.net/charmingwong
:http://www.jianshu.com/u/05686c7c92af
掘金:https://juejin.im/user/59924ed5f265da3e161aa74e
Github主页:https://charmingw.github.io/

欢迎转载~~~

更多相关文章

  1. Android编程研究(二)——Message和message Handler
  2. 关于Android网络传输加密的总结
  3. Android(安卓)Looper和Handler分析 .
  4. 游走Android系列之handler
  5. Android事件总线分发库EventBus3.0的简单讲解与实践
  6. SurfaceView应用浅析
  7. Android(安卓)RxJava/RxAndroid结合Retrofit使用
  8. androidHandler讲解
  9. 关于Android的Service

随机推荐

  1. Android 淡入淡出动画xml配置代码展示
  2. XSL将XML中的CDATA注释输出为HTML文本的
  3. RSS全站静态输出和RSS订阅的步骤(dedecms)
  4. ASP.NET读取RSS的实例解析
  5. 关于XML字符的详细介绍
  6. 关于server.xml的9篇文章推荐
  7. 关于xdoc的10篇文章推荐
  8. 关于JTree的文章推荐
  9. 关于SQLite多线程的用法详解
  10. 关于J2ME 3D图形技术的实例详解