google官方推荐,当使用HashMap时,Key值为整数类型时,建议使用SparseArray的效率更高

下面我们来见识一下SparseArray、HashMap、ArrayMap的性能区别,首先我们先看一下google官方推荐的SparseArray,SparseArray是Android的API,JDK中没有的该类。

SparseArray的源码分析:

当我们在Android中使用HashMap时,我们会看到编译器会弹如下提示:

Android SparseArray与HashMap与ArrayMap的性能差别_第1张图片

大概意思就是建议我们使用SparseArray来代替HashMap

SparseArray源码:(直接在代码中讲解)

public class SparseArray<E> implements Cloneable {      //用于删除元素的时候使用,当删除某个元素,我们需要将int-values中的values赋值为DELETED    private static final Object DELETED = new Object();      //判断此时是否需要垃圾回收(也就是数据是否需要重新整理,将数组中mValues值为DELETED的int-values从数组中删除掉)    private boolean mGarbage = false;      //存储索引集合.    private int[] mKeys;      //存储对象集合.    private Object[] mValues;      //存储的键值对总数.    private int mSize;      /**      * 创建默认大小为10     * Creates a new SparseArray containing no mappings.      */      public SparseArray() {          this(10);      }      /**      * 初始化键值对     * Creates a new SparseArray containing no mappings that will not      * require any additional memory allocation to store the specified      * number of mappings.  If you supply an initial capacity of 0, the      * sparse array will be initialized with a light-weight representation      * not requiring any additional array allocations.      */      public SparseArray(int initialCapacity) {          //如果传入的值是0,则键值对都是empty,否则按照传入的值申请最初的数组大小        if (initialCapacity == 0) {              mKeys = ContainerHelpers.EMPTY_INTS;              mValues = ContainerHelpers.EMPTY_OBJECTS;          } else {              initialCapacity = ArrayUtils.idealIntArraySize(initialCapacity);              mKeys = new int[initialCapacity];              mValues = new Object[initialCapacity];          }          //键值对的总个数为0        mSize = 0;      }      //深拷贝,创建新的空间存储这些键值对    @Override      @SuppressWarnings("unchecked")      public SparseArray clone() {          SparseArray clone = null;          try {              clone = (SparseArray) super.clone();              clone.mKeys = mKeys.clone();              clone.mValues = mValues.clone();          } catch (CloneNotSupportedException cnse) {              /* ignore */          }          return clone;      }      //通过键获取值    /**      * Gets the Object mapped from the specified key, or null      * if no such mapping has been made.      */      public E get(int key) {          return get(key, null);      }      //通过键获取值,如果没有则返回valueIfKeyNotFound    /**      * Gets the Object mapped from the specified key, or the specified Object      * if no such mapping has been made.      */      @SuppressWarnings("unchecked")      public E get(int key, E valueIfKeyNotFound) {          //它使用的是二分查找,提高查找效率        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);          if (i < 0 || mValues[i] == DELETED) {              return valueIfKeyNotFound;          } else {              return (E) mValues[i];          }      }      //删除第key个位置的数    /**      * Removes the mapping from the specified key, if there was any.      */      public void delete(int key) {          //二分查找        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);          if (i >= 0) {              //确定删除的数,将其置为DELETED,然后将垃圾回收置为true            if (mValues[i] != DELETED) {                  mValues[i] = DELETED;                  mGarbage = true;              }          }      }      /**      * Alias for {@link #delete(int)}.      */      public void remove(int key) {          delete(key);      }      /**      * Removes the mapping at the specified index.      */      public void removeAt(int index) {          if (mValues[index] != DELETED) {              mValues[index] = DELETED;              mGarbage = true;          }      }      /**      * Remove a range of mappings as a batch.      *      * @param index Index to begin at      * @param size Number of mappings to remove      */      public void removeAtRange(int index, int size) {          final int end = Math.min(mSize, index + size);          for (int i = index; i < end; i++) {              removeAt(i);          }      }      //垃圾回收方法    private void gc() {          // Log.e("SparseArray", "gc start with " + mSize);          int n = mSize;          int o = 0;          int[] keys = mKeys;          Object[] values = mValues;          for (int i = 0; i < n; i++) {              Object val = values[i];              if (val != DELETED) {                  if (i != o) {                      //最开始我被这儿给绕了一道                    //Java中的除基本类型以外的数据使用“=”都是引用(如果没有重写的话)                    //所以这儿可以通过这种方式改变对象数组的值                    keys[o] = keys[i];                      values[o] = val;                      values[i] = null;                  }                  o++;              }          }          mGarbage = false;          mSize = o;          // Log.e("SparseArray", "gc end with " + mSize);      }      //向键值对中放值    /**      * Adds a mapping from the specified key to the specified value,      * replacing the previous mapping from the specified key if there      * was one.      */      public void put(int key, E value) {          //二分查找        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);          //如果这个键已经有了,否则没有        if (i >= 0) {              mValues[i] = value;          } else {              i = ~i;              //如果这个键值插入的地方已经被删除了,我们可以直接给他赋值,否则查询出的位置的元素没有被删除            if (i < mSize && mValues[i] == DELETED) {                  mKeys[i] = key;                  mValues[i] = value;                  return;              }              //判断数组的大小是否大于等于数组初始化的大小,如果大并且其中有垃圾则调用垃圾回收方法            if (mGarbage && mSize >= mKeys.length) {                  gc();                  //再次二分查找,取出键值在数组的位置                // Search again because indices may have changed.                  i = -ContainerHelpers.binarySearch(mKeys, mSize, key);              }              //如果数组的大小依旧大于等于初始化的大小,则申请一段mSize+1大小的数组            if (mSize >= mKeys.length) {                  int n = ArrayUtils.idealIntArraySize(mSize + 1);                  int[] nkeys = new int[n];                  Object[] nvalues = new Object[n];                  //表示将数组mKeys从0开始复制到数组nkeys从0开始,复制的长度为mKeys的长度                // Log.e("SparseArray", "grow " + mKeys.length + " to " + n);                  System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);                  System.arraycopy(mValues, 0, nvalues, 0, mValues.length);                  mKeys = nkeys;                  mValues = nvalues;              }              // i为插入位置,如果i            if (mSize - i != 0) {                  // Log.e("SparseArray", "move " + (mSize - i));                  //将数组mKeys从i开始复制到mKeys从i+1开始,复制的长度为数组的长度减去当前插入的位置                System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);                  System.arraycopy(mValues, i, mValues, i + 1, mSize - i);              }              mKeys[i] = key;              mValues[i] = value;              mSize++;          }      }      /**      * Returns the number of key-value mappings that this SparseArray      * currently stores.      */       //返回数据的大小    public int size() {          if (mGarbage) {              gc();          }          return mSize;      }      /**      * Given an index in the range 0...size()-1, returns      * the key from the indexth key-value mapping that this      * SparseArray stores.      *      * 

The keys corresponding to indices in ascending order are guaranteed to * be in ascending order, e.g., keyAt(0) will return the * smallest key and keyAt(size()-1) will return the largest * key.

*/
//返回当前第index个值的键是多少 public int keyAt(int index) { if (mGarbage) { gc(); } return mKeys[index]; } /** * Given an index in the range 0...size()-1, returns * the value from the indexth key-value mapping that this * SparseArray stores. * *

The values corresponding to indices in ascending order are guaranteed * to be associated with keys in ascending order, e.g., * valueAt(0) will return the value associated with the * smallest key and valueAt(size()-1) will return the value * associated with the largest key.

*/
//返回当前index位置的值是多少 @SuppressWarnings("unchecked") public E valueAt(int index) { if (mGarbage) { gc(); } return (E) mValues[index]; } /** * Given an index in the range 0...size()-1, sets a new * value for the indexth key-value mapping that this * SparseArray stores. */ //给index位置的值设置为value public void setValueAt(int index, E value) { if (mGarbage) { gc(); } mValues[index] = value; } /** * Returns the index for which {@link #keyAt} would return the * specified key, or a negative number if the specified * key is not mapped. */ //返回键为key的位置 public int indexOfKey(int key) { if (mGarbage) { gc(); } return ContainerHelpers.binarySearch(mKeys, mSize, key); } /** * Returns an index for which {@link #valueAt} would return the * specified key, or a negative number if no keys map to the * specified value. *

Beware that this is a linear search, unlike lookups by key, * and that multiple keys can map to the same value and this will * find only one of them. *

Note also that unlike most collections' {@code indexOf} methods, * this method compares values using {@code ==} rather than {@code equals}. */ //返回值为value的位置 public int indexOfValue(E value) { if (mGarbage) { gc(); } for (int i = 0; i < mSize; i++) if (mValues[i] == value) return i; return -1; } /** * Removes all key-value mappings from this SparseArray. */ //清除当前键值对 public void clear() { int n = mSize; Object[] values = mValues; for (int i = 0; i < n; i++) { values[i] = null; } mSize = 0; mGarbage = false; } /** * Puts a key/value pair into the array, optimizing for the case where * the key is greater than all existing keys in the array. */ //在数组中插入键值对 public void append(int key, E value) { if (mSize != 0 && key <= mKeys[mSize - 1]) { put(key, value); return; } if (mGarbage && mSize >= mKeys.length) { gc(); } int pos = mSize; if (pos >= mKeys.length) { int n = ArrayUtils.idealIntArraySize(pos + 1); int[] nkeys = new int[n]; Object[] nvalues = new Object[n]; // Log.e("SparseArray", "grow " + mKeys.length + " to " + n); System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length); System.arraycopy(mValues, 0, nvalues, 0, mValues.length); mKeys = nkeys; mValues = nvalues; } mKeys[pos] = key; mValues[pos] = value; mSize = pos + 1; } /** * {@inheritDoc} * *

This implementation composes a string by iterating over its mappings. If * this map contains itself as a value, the string "(this Map)" * will appear in its place. */ //返回键值对 @Override public String toString() { if (size() <= 0) { return "{}"; } StringBuilder buffer = new StringBuilder(mSize * 28); buffer.append('{'); for (int i=0; iif (i > 0) { buffer.append(", "); } int key = keyAt(i); buffer.append(key); buffer.append('='); Object value = valueAt(i); if (value != this) { buffer.append(value); } else { buffer.append("(this Map)"); } } buffer.append('}'); return buffer.toString(); } }

SparseArry结构图解:

Android SparseArray与HashMap与ArrayMap的性能差别_第2张图片

SparseArray只能存储当键为int的键值对,通过源码我们可以看到这儿键是int而不是Integer,所以SparseArray提高效率的方式是去箱的操作,因为键是int型数据,所以就不需要hash值的方式来存储数据,插入和查询都是通过二分查找的方式进行,插入数据时可能会存在大量的数据搬移。但是它避免了装箱,所以这时就要看数据量的大小来对比时间的快慢,如果数据少,即使数据搬移也不会很多,所以效率上SparseArray比HashMap要好,空间上装箱过后的Integer要比int占的空间要大,所以空间效率上SparseArray要比HashMap好!

HashMap结构图解:

Android SparseArray与HashMap与ArrayMap的性能差别_第3张图片

HashMap的数据结构:

static class HashMapEntry implements Entry {        //键    final K key;        //值    V value;     //键生成的hash值    final int hash;       //如果Hash值一样,则它下一个键值对     HashMapEntry next;}

从数据结构中我们可以看出首先对key值求Hash值,如果该Hash值在Hash数组中不存在,则添加进去,如果存在,则跟着Hash值的链表在尾部添加上这个键值对,在时间效率方面,使用Hash算法,插入和查找的操作都很快,每个数组后面一般不会存在很长的链表,所以不考虑空间利用率,HashMap的效率是非常高的

ArrayMap的结构图解

Android SparseArray与HashMap与ArrayMap的性能差别_第4张图片

当插入时,根据key的hashcode()方法得到hash值,计算出在mArrays的index位置,然后利用二分查找找到对应的位置进行插入,当出现哈希冲突时,会在index的相邻位置插入。
空间角度考虑,ArrayMap每存储一条信息,需要保存一个hash值,一个key值,一个value值。对比下HashMap 粗略的看,只是减少了一个指向下一个entity的指针。
时间效率上看,插入和查找的时候因为都用的二分法,查找的时候应该是没有hash查找快,插入的时候呢,如果顺序插入的话效率肯定高,但如果是随机插入,肯定会涉及到大量的数组搬移,数据量大,肯定不行,再想一下,如果是不凑巧,每次插入的hash值都比上一次的小,那就得次次搬移,效率一下就扛不住了的感脚。

参考资料:

  1. HashMap,ArrayMap,SparseArray源码分析及性能对比
  2. Android内存优化(使用SparseArray和ArrayMap代替HashMap)
  3. Android 之Map容器替换 SparseArray,ArrayMap,ArraySet
  4. Android学习笔记之性能优化SparseArray
  5. SparseArray 的使用及实现原理
  6. SparseArray源码解析
  7. Android SparseArray源码分析

更多相关文章

  1. android:layout_alignParent 布局相对于父布局的位置
  2. 服务器端返回给客户端的数据格式
  3. 第五课--位置布局
  4. Android文件存储位置简述
  5. Android Sqlite数据库转义字符模糊查询
  6. Android 开发中 Parcel存储类型和数据容器
  7. [Android] 导入外部数据库
  8. Android 使用adb shell 和android studio插件Database Navigator
  9. 用Fiddler抓取Android、Iphone网络数据包

随机推荐

  1. Android开发者必知的开发资源
  2. Android中MVC的具体体现
  3. android style(样式)和theme(主题)设置
  4. Android(安卓)的表格控件GridView学习
  5. Android框架学习-5.设置(Settings)
  6. Android学习路线(二十八)保存文件
  7. Android应用程序与SurfaceFlinger服务的
  8. Android(安卓)App多个入口的实现方法
  9. Android多分辨率和多屏幕的布局适配详解
  10. 第三部分:Android(安卓)应用程序接口指南-