Android内存管理机制

Android内存管理主要有:LowMemory Killer机制,Ashmem,PMEM/ION及Native内存和Dalvik内存管理管理和JVM垃圾回收机制。

LowMemory Killer机制

源码位置drivers/staging/Android/lowmemorykiller.c

Android是一个多任务系统,也就是说可以同时运行多个程序,这个大家应该很熟悉。一般来说,启动运行一个程序是有一定的时间开销的,因此为了 加快运行速度,当你退出一个程序时,Android并不会立即杀掉它,这样下次再运行该程序时,可以很快的启动。随着系统中保留的程序越来越多,内存肯定 会出现不足,low memory killer就是在系统内存低于某值时,清除相关的程序,保障系统保持拥有一定数量的空闲内存。

Low memorykiller根据两个原则,进程的重要性和释放这个进程可获取的空闲内存数量,来决定释放的进程。

进程的重要性,由task_struct->signal_struct->oom_adj决定,

Android将程序的重要性分成以下几类,按照重要性依次降低的顺序,每个程序都会有一个oom_adj值,这个值越小,程序越重要,被杀的可能性越低:

除了上述程序重要性分类之外,Android系统还维护着另外一张表minfree用于维护内存警戒值,这两张表构成一个对应关系,两张表在” /sys/module/lowmemorykiller/parameters/”下保存。

adj文件内容如下形如”0,1,2,4,9,15”,minfree文件内容形如”8192,10240,12288,14336,1638,20480”,这样形成的表结构如下:

例如,当系统可用内存小于12384*4K大小时,会开始杀掉oom_adj>=9级别的进程。

进程的内存,通过get_mm_rss获取,在相同的oom_adj下,内存大的,优先被杀。


Ashmem(匿名内存共享)

源码位置:kernel/mm/ashmem.c

为进程间提供提供大块共享内存,同时为内核提供回收和管理这个内存的机制。

相比于malloc和anonymous/namedmmap等传统的内存分配机制,其优势是通过内核驱动提供了辅助内核的内存回收算法机制 (pin/unpin)。什么是pin和unpin呢?具体来讲,就是当你使用Ashmem分配了一块内存,但是其中某些部分却不会被使用时,那么就可以 将这块内存unpin掉。

unpin后,内核可以将它对应的物理页面回收,以作他用。你也不用担心进程无法对unpin掉的内存进行再次访问,因为回收后的内存还可以再次被获得(通过缺页handler),因为unpin操作并不会改变已经 mmap的地址空间。

AndroidPMEM/ION内存管理器

源码位置:drivers/misc/pmem.c

AndroidPmem是为了实现共享大尺寸连续物理内存而开发的一种机制,该机制对dsp,gpu等部件非常有用。Pmem相当于把系统内存划分出一部分单独管理,即不被linux mm管理,实际上linux mm根本看不到这段内存。

Pmem和Ashmem都通过mmap来实现共享内存,其区别在于Pmem的共享区域是一段连续的物理内存,而Ashmem的共享区域在虚拟空间是 连续的,物理内存却不一定连续。dsp和某些设备只能工作在连续的物理内存上,这样cpu与dsp之间的通信就需要通过Pmem来实现。

ION是google在Android4.0ICS为了解决内存碎片管理而引入的通用内存管理器,它会更加融合kernel。目前QCOM MSM, NVDIA Tegra, TI OMAP, MRVL PXA都用ION替换PMEM。

ION 定义了四种不同的heap,实现不同的内存分配策略。

AndroidNative内存和Dalvik内存管理

Native进程是采用C/C++实现,不包含dalvik实例的进程,/system/bin/目录下面的程序文件运行后都是以native进程形式存在的,如/system/bin/surfaceflinger/system/bin/rildprocrank等就是native进程,地址空间结构如下:

java进程是Android中运行于dalvik虚拟机之上的进程。dalvik虚拟机的宿主进程由fork()系统调用创建,所以每一个java进程 都是存在于一个native进程中,因此,java进程的内存分配比native进程复杂,因为进程中存在一个虚拟机实例。Android系统中的应用程 序基本都是java进程,如桌面、电话、联系人、状态栏等等,进程结构如下:

Stack空间(进栈和出栈)由操作系统控制,其中主要存储函数地址、函数参数、局部变量等等,所以Stack空间不需要很大,一般为几MB大小。

Heap空间的使用由程序员控制,程序员可以使用malloc、new、free、delete等函数调用来操作这片地址空间。Heap为程序完成 各种复杂任务提供内存空间,所以空间比较大,一般为几百MB到几GB。正是因为Heap空间由程序员管理,所以容易出现使用不当导致严重问题。

进程空间中的heap空间是我们需要重点关注的。heap空间完全由程序员控制,我们使用的mallocC++ newjava new所申请的空间都是heap空间, C/C++申请的内存空间在native heap中,而java申请的内存空间则在dalvikheap中。

进程的内存空间只是虚拟内存(或者叫作逻辑内存),而程序的运行需要的是实实在在的内存,即物理内存(RAM)。在必要时,操作系统会将程序运行中申请的内存(虚拟内存)映射到RAM,让进程能够使用物理内存。

RAM作为进程运行不可或缺的资源,对系统性能和稳定性有着决定性影响。另外,RAM的一部分被操作系统留作他用,比如显存等等,内存映射和显存等都是由操作系统控制,我们也不必过多地关注它,进程所操作的空间都是虚拟地址空间,无法直接操作RAM。示意图如下:

Android系统对dalvik的vm heapsize作了硬性限制,当java进程申请的java空间超过阈值时,就会抛出OOM异常,在/system/build.prop中有三项可以配置相关信息。

dalvik.vm.heapstartsize:堆分配的初始大小,调整这个值会影响到应用的流畅性和整体ram消耗。这个值越小,系统ram消 耗越慢,但是由于初始值较小,一些较大的应用需要扩张这个堆,从而引发gc和堆调整的策略,会应用反应更慢。相反,这个值越大系统ram消耗越快,但是程序更流畅。

dalvik.vm.heapgrowthlimit:受控情况下的极限堆(仅仅针对dalvik堆,不包括native堆)大小,dvm heap是可增长的,但是正常情况下dvm heap的大小是不会超过dalvik.vm.heapgrowthlimit的值(非正常情况下面会详细说明)。这个值控制那些受控应用的极限堆大小, 如果受控的应用dvm heap size超过该值,则将引发oom(out of memory)。

dalvik.vm.heapsize:不受控情况下的极限堆大小,这个就是堆的最大值。不管它是不是受控的。这个值会影响非受控应用的dalvikheap size。一旦dalvik heap size超过这个值,直接引发oom。

JVM垃圾回收机制

JVM的垃圾原理是这样的,它把对象分为年轻代(Young)、年老代(Tenured)、持久代(Perm),对不同生命周期的对象使用不同的垃圾回收算法。

年轻代(Young):年轻代分为三个区,一个eden区,两个Survivor区。程序中生成的大部分新的对象都在Eden区中,当Eden区满 时,还存活的对象将被复制到其中一个Survivor区,当此Survivor区的对象占用空间满了时,此区存活的对象又被复制到另外一个 Survivor区,当这个Survivor区也满了的时候,从第一个Survivor区复制过来的并且此时还存活的对象,将被复制到年老代。

年老代(Tenured)年老代存放的是上面年轻代复制过来的对象,也就是在年轻代中还存活的对象,并且区满了复制过来的。一般来说,年老代中的对象生命周期都比较长。

持久代(Perm)用于存放静态的类和方法,持久代对垃圾回收没有显著的影响。

Android内存分析工具

内存监控工具DDMS

Ddms可以在eclipse中安装对应的插件,同时在androidsdk的tools文件夹也有同样的工具,并且功能比eclipse插件更完备。

切换到eclipse的ddms视图后,从设备中选择要监控的进程(手机需要开启usb调试,被监控应用的manifest中android:debuggable应该为true)

如下图操作,我们主要关注dataobject类型的total size数据在使用过程中是否出现异常的数据波动。

Eclipse MAT插件

Mat是eclipse的一个插件,安装完成之后,在ddms试图下,同时在左侧设备试图上方选择“Update Heap”和“Dump HPROF file”按钮,在弹出的窗口中选择“Leak Suspects Report”并finish,即可出现下面的结果试图:

进入leaksuspects之后,就能列出所有可能有泄漏的地方以及代码片段

Adb shell的dumpsys meminfo命令


Adbshell的cat命令

应用内存分配跟踪工具Allocation tracker

同样该功能用到ddms ,只是里面提供的一个子功能而已,能够知道所有对象的分配是在代码的哪个类,哪个文件的哪一行。

AndroidOOM的常见原因

  • 非静态内部类的静态实例容易造成内存泄漏

  • activity使用静态成员

  • 使用handler时的内存问题

  • 注册某个对象后未反注册

  • 集合中对象没清理造成的内存泄露

  • 资源对象没关闭造成的内存泄露

  • 一些不良代码成内存压力:Bitmap使用不当;构造Adapter时,没有使用缓存的 convertView;在经常调用的方法中创建对象(例如循环)

参考资料:

  1. Androidmemory fundamentals

  2. Forensic Memory Analysis of Android'sDalvik Virtual Machine

  3. Memory management for_android_apps

  4. android内存管理机制分析

  5. Android 操作系统的内存回收机制

  6. Android系统匿名共享内存(AnonymousShared Memory)C++调用接口分析

  7. Android系统匿名共享内存Ashmem(AnonymousShared Memory)简要介绍和学习计划 - 老罗的Android之旅 - 博客频道 - CSDN.NET

  8. 程序源代码分析 - 老罗的Android之旅 - 博客频道 - CSDN.NET

  9. Android系统匿名共享内存Ashmem(AnonymousShared Memory)在进程间共享的原理分析 - 老罗的Android之旅 - 博客频道 - CSDN.NET

  10. Windows内存与进程管理器底层分析

  11. 什么是内存直接映像技术?它有何特点?

  12. Mysteries of Windows Memory ManagementRevealed

  13. 全面介绍Windows内存管理机制及C++内存分配实例

  14. 技术内幕:Android对Linux内核的增强

  15. android内存管理了解_百度文库

  16. Android low memory killer 详解-tuyer-ChinaUnix博客

  17. Linux 设备文件简介

  18. Explore Android Internals

  19. Inside Android's Dalvik VM - NEJUG Nov 2011

  20. android之ION内存管理器(1)-- 简介

  21. Android进程的内存管理分析

  22. Gc in android

  23. Android内存泄漏分析及调试

  24. Android OOM介绍及分析方法

更多相关文章

  1. (二)Android系统信息
  2. Android(安卓)核心分析 之八------Android(安卓)启动过程详解
  3. android 使用Intent传递数据之剪切板
  4. android 缓存Bitmap
  5. Android(安卓)内存数据库
  6. Android内存泄漏监测(MAT)及解决办法
  7. Android中的WatchDog
  8. 【自学Android】使用ModelView,DataBinding,LiveData开发计分板A
  9. Android关于cpu/cpuset/schedtune的应用

随机推荐

  1. Android图片显示ICON――基础编
  2. Android下Achartengine绘制折线图
  3. Android(安卓)raw文件夹和assets文件夹
  4. TableLayout1
  5. Android录音时指针摆动的实现(附源码)
  6. Android(安卓)String.xml文件中转义字符
  7. tabhost (activitygroup)中子页面弹出对
  8. android拍照显示缩略图
  9. Android(安卓)项目打包jar,生产sdk供别人
  10. [多媒体]android MediaRecoder 实现录像