1.方式
1.1方式一:先把App操作过程录制成视频,然后根据视频转换成Gif
参考:http://www.jb51.net/article/78236.htm
1.2方式二:采用截屏的方式得到bitmaps数组,然后根据bitmaps数组生成gif
2.方式二举例

//截屏类package com.example.androidgifmaker;import java.io.FileNotFoundException;import java.io.FileOutputStream;import java.io.IOException;import java.util.ArrayList;import android.app.Activity;import android.graphics.Bitmap;import android.graphics.Rect;import android.util.Log;public class ScreenShot {    public static String TAG = "ScreenShot";    public static ArrayList<Bitmap> bitmaps; //Add your bitmaps from internal or external storage.    // 获取指定Activity的截屏,保存到png文件    private static Bitmap takeScreenShot(Activity activity) {        // View是你需要截图的View        View view = activity.getWindow().getDecorView();        view.setDrawingCacheEnabled(true);        view.buildDrawingCache();        Bitmap b1 = view.getDrawingCache();        // 获取状态栏高度        Rect frame = new Rect();        activity.getWindow().getDecorView().getWindowVisibleDisplayFrame(frame);        int statusBarHeight = frame.top;        Log.i(TAG, "状态栏的高度" + statusBarHeight);        int wintop = activity.getWindow().findViewById(android.R.id.content).getTop();        int titleBarHeight = wintop-statusBarHeight;        Log.i(TAG, "标题栏的高度:"+ titleBarHeight);        // 获取屏幕长和高        int width = activity.getWindowManager().getDefaultDisplay().getWidth();        int height = activity.getWindowManager().getDefaultDisplay().getHeight();        Log.i(TAG, "屏幕的宽度:" + width);        Log.i(TAG, "屏幕的高度:" + height);        // 去掉标题栏        // Bitmap b = Bitmap.createBitmap(b1, 0, 25, 320, 455);        Bitmap b = Bitmap.createBitmap(b1, 0, statusBarHeight, width, height - statusBarHeight);        view.destroyDrawingCache();        return b;    }    // 程序入口    public static void shoot(Activity a) {        if(bitmaps!=null){            bitmaps.add(ScreenShot.takeScreenShot(a));        }    }}
//Gif生成类AnimatedGifMaker.class //开源项目:https://github.com/dilligan/AndroidGifMakerpackage com.example.androidgifmaker;import java.io.BufferedOutputStream;import java.io.FileOutputStream;import java.io.IOException;import java.io.OutputStream;import java.nio.ByteBuffer;import android.graphics.Bitmap;import android.graphics.Color;public class AnimatedGifMaker{    // still logs noWRITE and noEXISTER    // use Paint for instance field transparent in the future    protected int width; // image size    protected int height;    protected Color transparent = null; // transparent color if given    protected int transIndex; // transparent index in color table    protected int repeat = -1; // no repeat    protected int delay = 0; // frame delay (hundredths)    protected boolean started = false; // ready to output frames    protected OutputStream out;    protected Bitmap image; // current frame    protected byte[] pixels; // BGR byte array from frame    protected byte[] indexedPixels; // converted frame indexed to palette    protected int colorDepth; // number of bit planes    protected byte[] colorTab; // RGB palette    protected boolean[] usedEntry = new boolean[256]; // active palette entries    protected int palSize = 7; // color table size (bits-1)    protected int dispose = -1; // disposal code (-1 = use default)    protected boolean closeStream = false; // close stream when finished    protected boolean firstFrame = true;    protected boolean sizeSet = false; // if false, get size from first frame    protected int sample = 10; // default sample interval for quantizer    /** * Sets the delay time between each frame, or changes it for subsequent * frames (applies to last frame added). * * @param ms * int delay time in milliseconds */    public void setDelay(int ms) {        delay = Math.round(ms / 10.0f);    }    /** * Sets the GIF frame disposal code for the last added frame and any * subsequent frames. Default is 0 if no transparent color has been set, * otherwise 2. * * @param code * int disposal code. */    public void setDispose(int code) {        if (code >= 0) {            dispose = code;        }    }    /** * Sets the number of times the set of GIF frames should be played. Default * is 1; 0 means play indefinitely. Must be invoked before the first image * is added. * * @param iter * int number of iterations. * @return */    public void setRepeat(int iter) {        if (iter >= 0) {            repeat = iter;        }    }    /** * MAKES ABSOLUTE WHITE (0,0,0) THE TRANSPARENT COLOR. * * @param c * Color to be treated as transparent on display. */    public void setTransparent(Color c) {        transparent = c;    }    /** * Adds next GIF frame. The frame is not written immediately, but is * actually deferred until the next frame is received so that timing data * can be inserted. Invoking <code>finish()</code> flushes all frames. If * <code>setSize</code> was not invoked, the size of the first image is used * for all subsequent frames. * * @param im * BufferedImage containing frame to write. * @return true if successful. */    public boolean addFrame(Bitmap im) {        if ((im == null) || !started) {            return false;        }        boolean ok = true;        try {            if (!sizeSet) {                // use first frame's size                setSize(im.getWidth(), im.getHeight());            }            image = im;            getImagePixels(); // convert to correct format if necessary            analyzePixels(); // build color table & map pixels            if (firstFrame) {                writeLSD(); // logical screen descriptior                writePalette(); // global color table                if (repeat >= 0) {                    // use NS app extension to indicate reps                    writeNetscapeExt();                }            }            writeGraphicCtrlExt(); // write graphic control extension THIS IS IT            writeImageDesc(); // image descriptor            if (!firstFrame) {                writePalette(); // local color table            }            writePixels(); // encode and write pixel data            firstFrame = false;        } catch (IOException e) {            ok = false;        }        return ok;    }    /** * Flushes any pending data and closes output file. If writing to an * OutputStream, the stream is not closed. */    public boolean finish() {        if (!started)            return false;        boolean ok = true;        started = false;        try {            out.write(0x3b); // gif trailer            out.flush();            if (closeStream) {                out.close();            }        } catch (IOException e) {            ok = false;        }        // reset for subsequent use        transIndex = 0;        out = null;        image = null;        pixels = null;        indexedPixels = null;        colorTab = null;        closeStream = false;        firstFrame = true;        return ok;    }    /** * Sets frame rate in frames per second. Equivalent to * <code>setDelay(1000/fps)</code>. * * @param fps * float frame rate (frames per second) */    public void setFrameRate(float fps) {        if (fps != 0f) {            delay = Math.round(100f / fps);        }    }    /** * Sets quality of color quantization (conversion of images to the maximum * 256 colors allowed by the GIF specification). Lower values (minimum = 1) * produce better colors, but slow processing significantly. 10 is the * default, and produces good color mapping at reasonable speeds. Values * greater than 20 do not yield significant improvements in speed. * * @param quality * int greater than 0. * @return */    public void setQuality(int quality) {        if (quality < 1)            quality = 1;        sample = quality;    }    /** * Sets the GIF frame size. The default size is the size of the first frame * added if this method is not invoked. * * @param w * int frame width. * @param h * int frame width. */    public void setSize(int w, int h) {        if (started && !firstFrame)            return;        width = w;        height = h;        if (width < 1)            width = 320;        if (height < 1)            height = 240;        sizeSet = true;    }    /** * Initiates GIF file creation on the given stream. The stream is not closed * automatically. * * @param os * OutputStream on which GIF images are written. * @return false if initial write failed. */    public boolean start(OutputStream os) {        if (os == null)            return false;        boolean ok = true;        closeStream = false;        out = os;        try {            writeString("GIF87a"); // header        } catch (IOException e) {            ok = false;        }        return started = ok;    }    /** * Initiates writing of a GIF file with the specified name. * * @param file * String containing output file name. * @return false if open or initial write failed. */    public boolean start(String file) {        boolean ok = true;        try {            out = new BufferedOutputStream(new FileOutputStream(file));            ok = start(out);            closeStream = true;        } catch (IOException e) {            ok = false;        }        return started = ok;    }    /** * Analyzes image colors and creates color map. */    protected void analyzePixels() {        int len = pixels.length;        int nPix = len / 3;        indexedPixels = new byte[nPix];        NeuQuant nq = new NeuQuant(pixels, len, sample);        // initialize quantizer        colorTab = nq.process(); // create reduced palette        // convert map from BGR to RGB        for (int i = 0; i < colorTab.length; i += 3) {            byte temp = colorTab[i];            colorTab[i] = colorTab[i + 2];            colorTab[i + 2] = temp;            usedEntry[i / 3] = false;        }        // map image pixels to new palette        // HACK        int k = 0;        for (int i = 0; i < nPix; i++) {            int index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff,                    pixels[k++] & 0xff);            usedEntry[index] = true;            indexedPixels[i] = (byte) index;        }        pixels = null;        colorDepth = 8;        palSize = 7;        // get closest match to transparent color if specified        if (transparent != null) {            transIndex = findClosest(transparent);        }    }    /** * Returns index of palette color closest to c * */    protected int findClosest(Color c) {        if (colorTab == null)            return -1;        // HACK        int r = 0;        int g = 0;        int b = 0;        int minpos = 0;        int dmin = 256 * 256 * 256;        int len = colorTab.length;        for (int i = 0; i < len;) {            int dr = r - (colorTab[i++] & 0xff);            int dg = g - (colorTab[i++] & 0xff);            int db = b - (colorTab[i] & 0xff);            int d = dr * dr + dg * dg + db * db;            int index = i / 3;            if (usedEntry[index] && (d < dmin)) {                dmin = d;                minpos = index;            }            i++;        }        return minpos;    }    /** * Extracts image pixels into byte array "pixels" */    protected void getImagePixels() {        // calculate how many bytes our image consists of.        int bytes = image.getByteCount();        ByteBuffer buffer = ByteBuffer.allocate(bytes); // Create a new buffer        image.copyPixelsToBuffer(buffer); // Move the byte data to the buffer        byte[] inputBytes = buffer.array(); // Get the underlying array                                            // containing the data.        pixels = new byte[(3 * inputBytes.length) / 4];        for (int i = 0; i < inputBytes.length / 4; i++) {            byte r = inputBytes[4 * i];            byte g = inputBytes[4 * i + 1];            byte b = inputBytes[4 * i + 2];            // ignore alpha            pixels[3 * i] = r;            pixels[3 * i + 1] = g;            pixels[3 * i + 2] = b;        }        for (int i = 0; i < pixels.length; i += 3) {            //switch R and B            byte temp = pixels[i];            pixels[i] = pixels[i + 2];            pixels[i + 2] = temp;        }    }    /** * Writes Graphic Control Extension */    protected void writeGraphicCtrlExt() throws IOException {        out.write(0x21); // extension introducer        out.write(0xf9); // GCE label        out.write(4); // data block size        int transp, disp;        if (transparent == null) {            transp = 0;            disp = 0; // dispose = no action        } else {            transp = 1;            disp = 2; // force clear if using transparent color        }        if (dispose >= 0) {            disp = dispose & 7; // user override        }        disp <<= 2;        // packed fields        out.write(0 | // 1:3 reserved                disp | // 4:6 disposal                0 | // 7 user input - 0 = none                transp); // 8 transparency flag        writeShort(delay); // delay x 1/100 sec        out.write(transIndex); // transparent color index        out.write(0); // block terminator    }    /** * Writes Image Descriptor */    protected void writeImageDesc() throws IOException {        out.write(0x2c); // image separator        writeShort(0); // image position x,y = 0,0        writeShort(0);        writeShort(width); // image size        writeShort(height);        // packed fields        if (firstFrame) {            // no LCT - GCT is used for first (or only) frame            out.write(0);        } else {            // specify normal LCT            out.write(0x80 | // 1 local color table 1=yes                    0 | // 2 interlace - 0=no                    0 | // 3 sorted - 0=no                    0 | // 4-5 reserved                    palSize); // 6-8 size of color table        }    }    /** * Writes Logical Screen Descriptor */    protected void writeLSD() throws IOException {        // logical screen size        writeShort(width);        writeShort(height);        // packed fields        out.write((0x80 | // 1 : global color table flag = 1 (gct used)        0x70 | // 2-4 : color resolution = 7        0x00 | // 5 : gct sort flag = 0        palSize)); // 6-8 : gct size        out.write(0); // background color index        out.write(0); // pixel aspect ratio - assume 1:1    }    /** * Writes Netscape application extension to define repeat count. */    protected void writeNetscapeExt() throws IOException {        out.write(0x21); // extension introducer        out.write(0xff); // app extension label        out.write(11); // block size        writeString("NETSCAPE" + "2.0"); // app id + auth code        out.write(3); // sub-block size        out.write(1); // loop sub-block id        writeShort(repeat); // loop count (extra iterations, 0=repeat forever)        out.write(0); // block terminator    }    /** * Writes color table */    protected void writePalette() throws IOException {        out.write(colorTab, 0, colorTab.length);        int n = (3 * 256) - colorTab.length;        for (int i = 0; i < n; i++) {            out.write(0);        }    }    /** * Encodes and writes pixel data */    protected void writePixels() throws IOException {        LZWEncoder encoder = new LZWEncoder(width, height, indexedPixels,                colorDepth);        encoder.encode(out);    }    /** * Write 16-bit value to output stream, LSB first */    protected void writeShort(int value) throws IOException {        out.write(value & 0xff);        out.write((value >> 8) & 0xff);    }    /** * Writes string to output stream */    protected void writeString(String s) throws IOException {        for (int i = 0; i < s.length(); i++) {            out.write((byte) s.charAt(i));        }    }}class NeuQuant {    protected static final int netsize = 256; /* number of colours used */    /* four primes near 500 - assume no image has a length so large */    /* that it is divisible by all four primes */    protected static final int prime1 = 499;    protected static final int prime2 = 491;    protected static final int prime3 = 487;    protected static final int prime4 = 503;    protected static final int minpicturebytes = (3 * prime4);    /* minimum size for input image */    /* * Program Skeleton ---------------- [select samplefac in range 1..30] [read * image from input file] pic = (unsigned char*) malloc(3*width*height); * initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write * output image header, using writecolourmap(f)] inxbuild(); write output * image using inxsearch(b,g,r) */    /* * Network Definitions ------------------- */    protected static final int maxnetpos = (netsize - 1);    protected static final int netbiasshift = 4; /* bias for colour values */    protected static final int ncycles = 100; /* no. of learning cycles */    /* defs for freq and bias */    protected static final int intbiasshift = 16; /* bias for fractions */    protected static final int intbias = (((int) 1) << intbiasshift);    protected static final int gammashift = 10; /* gamma = 1024 */    protected static final int gamma = (((int) 1) << gammashift);    protected static final int betashift = 10;    protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */    protected static final int betagamma = (intbias << (gammashift - betashift));    /* defs for decreasing radius factor */    protected static final int initrad = (netsize >> 3); /* * for 256 cols, radius * starts */    protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */    protected static final int radiusbias = (((int) 1) << radiusbiasshift);    protected static final int initradius = (initrad * radiusbias); /* * and * decreases * by a */    protected static final int radiusdec = 30; /* factor of 1/30 each cycle */    /* defs for decreasing alpha factor */    protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */    protected static final int initalpha = (((int) 1) << alphabiasshift);    protected int alphadec; /* biased by 10 bits */    /* radbias and alpharadbias used for radpower calculation */    protected static final int radbiasshift = 8;    protected static final int radbias = (((int) 1) << radbiasshift);    protected static final int alpharadbshift = (alphabiasshift + radbiasshift);    protected static final int alpharadbias = (((int) 1) << alpharadbshift);    /* * Types and Global Variables -------------------------- */    protected byte[] thepicture; /* the input image itself */    protected int lengthcount; /* lengthcount = H*W*3 */    protected int samplefac; /* sampling factor 1..30 */    // typedef int pixel[4]; /* BGRc */    protected int[][] network; /* the network itself - [netsize][4] */    protected int[] netindex = new int[256];    /* for network lookup - really 256 */    protected int[] bias = new int[netsize];    /* bias and freq arrays for learning */    protected int[] freq = new int[netsize];    protected int[] radpower = new int[initrad];    /* radpower for precomputation */    /* * Initialise network in range (0,0,0) to (255,255,255) and set parameters * ----------------------------------------------------------------------- */    public NeuQuant(byte[] thepic, int len, int sample) {        int i;        int[] p;        thepicture = thepic;        lengthcount = len;        samplefac = sample;        network = new int[netsize][];        for (i = 0; i < netsize; i++) {            network[i] = new int[4];            p = network[i];            p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;            freq[i] = intbias / netsize; /* 1/netsize */            bias[i] = 0;        }    }    public byte[] colorMap() {        byte[] map = new byte[3 * netsize];        int[] index = new int[netsize];        for (int i = 0; i < netsize; i++)            index[network[i][3]] = i;        int k = 0;        for (int i = 0; i < netsize; i++) {            int j = index[i];            map[k++] = (byte) (network[j][0]);            map[k++] = (byte) (network[j][1]);            map[k++] = (byte) (network[j][2]);        }        return map;    }    /* * Insertion sort of network and building of netindex[0..255] (to do after * unbias) * ------------------------------------------------------------------ * ------------- */    public void inxbuild() {        int i, j, smallpos, smallval;        int[] p;        int[] q;        int previouscol, startpos;        previouscol = 0;        startpos = 0;        for (i = 0; i < netsize; i++) {            p = network[i];            smallpos = i;            smallval = p[1]; /* index on g */            /* find smallest in i..netsize-1 */            for (j = i + 1; j < netsize; j++) {                q = network[j];                if (q[1] < smallval) { /* index on g */                    smallpos = j;                    smallval = q[1]; /* index on g */                }            }            q = network[smallpos];            /* swap p (i) and q (smallpos) entries */            if (i != smallpos) {                j = q[0];                q[0] = p[0];                p[0] = j;                j = q[1];                q[1] = p[1];                p[1] = j;                j = q[2];                q[2] = p[2];                p[2] = j;                j = q[3];                q[3] = p[3];                p[3] = j;            }            /* smallval entry is now in position i */            if (smallval != previouscol) {                netindex[previouscol] = (startpos + i) >> 1;                for (j = previouscol + 1; j < smallval; j++)                    netindex[j] = i;                previouscol = smallval;                startpos = i;            }        }        netindex[previouscol] = (startpos + maxnetpos) >> 1;        for (j = previouscol + 1; j < 256; j++)            netindex[j] = maxnetpos; /* really 256 */    }    /* * Main Learning Loop ------------------ */    public void learn() {        int i, j, b, g, r;        int radius, rad, alpha, step, delta, samplepixels;        byte[] p;        int pix, lim;        if (lengthcount < minpicturebytes)            samplefac = 1;        alphadec = 30 + ((samplefac - 1) / 3);        p = thepicture;        pix = 0;        lim = lengthcount;        samplepixels = lengthcount / (3 * samplefac);        delta = samplepixels / ncycles;        alpha = initalpha;        radius = initradius;        rad = radius >> radiusbiasshift;        if (rad <= 1)            rad = 0;        for (i = 0; i < rad; i++)            radpower[i] = alpha                    * (((rad * rad - i * i) * radbias) / (rad * rad));        // fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad);        if (lengthcount < minpicturebytes)            step = 3;        else if ((lengthcount % prime1) != 0)            step = 3 * prime1;        else {            if ((lengthcount % prime2) != 0)                step = 3 * prime2;            else {                if ((lengthcount % prime3) != 0)                    step = 3 * prime3;                else                    step = 3 * prime4;            }        }        i = 0;        while (i < samplepixels) {            b = (p[pix + 0] & 0xff) << netbiasshift;            g = (p[pix + 1] & 0xff) << netbiasshift;            r = (p[pix + 2] & 0xff) << netbiasshift;            j = contest(b, g, r);            altersingle(alpha, j, b, g, r);            if (rad != 0)                alterneigh(rad, j, b, g, r); /* alter neighbours */            pix += step;            if (pix >= lim)                pix -= lengthcount;            i++;            if (delta == 0)                delta = 1;            if (i % delta == 0) {                alpha -= alpha / alphadec;                radius -= radius / radiusdec;                rad = radius >> radiusbiasshift;                if (rad <= 1)                    rad = 0;                for (j = 0; j < rad; j++)                    radpower[j] = alpha                            * (((rad * rad - j * j) * radbias) / (rad * rad));            }        }        // fprintf(stderr,"finished 1D learning: final alpha=%f        // !\n",((float)alpha)/initalpha);    }    /* * Search for BGR values 0..255 (after net is unbiased) and return colour * index * -------------------------------------------------------------------- * -------- */    public int map(int b, int g, int r) {        int i, j, dist, a, bestd;        int[] p;        int best;        bestd = 1000; /* biggest possible dist is 256*3 */        best = -1;        i = netindex[g]; /* index on g */        j = i - 1; /* start at netindex[g] and work outwards */        while ((i < netsize) || (j >= 0)) {            if (i < netsize) {                p = network[i];                dist = p[1] - g; /* inx key */                if (dist >= bestd)                    i = netsize; /* stop iter */                else {                    i++;                    if (dist < 0)                        dist = -dist;                    a = p[0] - b;                    if (a < 0)                        a = -a;                    dist += a;                    if (dist < bestd) {                        a = p[2] - r;                        if (a < 0)                            a = -a;                        dist += a;                        if (dist < bestd) {                            bestd = dist;                            best = p[3];                        }                    }                }            }            if (j >= 0) {                p = network[j];                dist = g - p[1]; /* inx key - reverse dif */                if (dist >= bestd)                    j = -1; /* stop iter */                else {                    j--;                    if (dist < 0)                        dist = -dist;                    a = p[0] - b;                    if (a < 0)                        a = -a;                    dist += a;                    if (dist < bestd) {                        a = p[2] - r;                        if (a < 0)                            a = -a;                        dist += a;                        if (dist < bestd) {                            bestd = dist;                            best = p[3];                        }                    }                }            }        }        return (best);    }    public byte[] process() {        learn();        unbiasnet();        inxbuild();        return colorMap();    }    /* * Unbias network to give byte values 0..255 and record position i to * prepare for sort * ---------------------------------------------------------- * ------------------------- */    public void unbiasnet() {        int i;        for (i = 0; i < netsize; i++) {            network[i][0] >>= netbiasshift;            network[i][1] >>= netbiasshift;            network[i][2] >>= netbiasshift;            network[i][3] = i; /* record colour no */        }    }    /* * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in * radpower[|i-j|] * ---------------------------------------------------------- * ----------------------- */    protected void alterneigh(int rad, int i, int b, int g, int r) {        int j, k, lo, hi, a, m;        int[] p;        lo = i - rad;        if (lo < -1)            lo = -1;        hi = i + rad;        if (hi > netsize)            hi = netsize;        j = i + 1;        k = i - 1;        m = 1;        while ((j < hi) || (k > lo)) {            a = radpower[m++];            if (j < hi) {                p = network[j++];                try {                    p[0] -= (a * (p[0] - b)) / alpharadbias;                    p[1] -= (a * (p[1] - g)) / alpharadbias;                    p[2] -= (a * (p[2] - r)) / alpharadbias;                } catch (Exception e) {                } // prevents 1.3 miscompilation            }            if (k > lo) {                p = network[k--];                try {                    p[0] -= (a * (p[0] - b)) / alpharadbias;                    p[1] -= (a * (p[1] - g)) / alpharadbias;                    p[2] -= (a * (p[2] - r)) / alpharadbias;                } catch (Exception e) {                }            }        }    }    /* * Move neuron i towards biased (b,g,r) by factor alpha * ---------------------------------------------------- */    protected void altersingle(int alpha, int i, int b, int g, int r) {        /* alter hit neuron */        int[] n = network[i];        n[0] -= (alpha * (n[0] - b)) / initalpha;        n[1] -= (alpha * (n[1] - g)) / initalpha;        n[2] -= (alpha * (n[2] - r)) / initalpha;    }    /* * Search for biased BGR values ---------------------------- */    protected int contest(int b, int g, int r) {        /* finds closest neuron (min dist) and updates freq */        /* finds best neuron (min dist-bias) and returns position */        /* * for frequently chosen neurons, freq[i] is high and bias[i] is * negative */        /* bias[i] = gamma*((1/netsize)-freq[i]) */        int i, dist, a, biasdist, betafreq;        int bestpos, bestbiaspos, bestd, bestbiasd;        int[] n;        bestd = ~(((int) 1) << 31);        bestbiasd = bestd;        bestpos = -1;        bestbiaspos = bestpos;        for (i = 0; i < netsize; i++) {            n = network[i];            dist = n[0] - b;            if (dist < 0)                dist = -dist;            a = n[1] - g;            if (a < 0)                a = -a;            dist += a;            a = n[2] - r;            if (a < 0)                a = -a;            dist += a;            if (dist < bestd) {                bestd = dist;                bestpos = i;            }            biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));            if (biasdist < bestbiasd) {                bestbiasd = biasdist;                bestbiaspos = i;            }            betafreq = (freq[i] >> betashift);            freq[i] -= betafreq;            bias[i] += (betafreq << gammashift);        }        freq[bestpos] += beta;        bias[bestpos] -= betagamma;        return (bestbiaspos);    }}class LZWEncoder {    private static final int EOF = -1;    private int imgW, imgH;    private byte[] pixAry;    private int initCodeSize;    private int remaining;    private int curPixel;    // GIFCOMPR.C - GIF Image compression routines    //    // Lempel-Ziv compression based on 'compress'. GIF modifications by    // David Rowley (mgardi@watdcsu.waterloo.edu)    // General DEFINEs    static final int BITS = 12;    static final int HSIZE = 5003; // 80% occupancy    // GIF Image compression - modified 'compress'    //    // Based on: compress.c - File compression ala IEEE Computer, June 1984.    //    // By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)    // Jim McKie (decvax!mcvax!jim)    // Steve Davies (decvax!vax135!petsd!peora!srd)    // Ken Turkowski (decvax!decwrl!turtlevax!ken)    // James A. Woods (decvax!ihnp4!ames!jaw)    // Joe Orost (decvax!vax135!petsd!joe)    int n_bits; // number of bits/code    int maxbits = BITS; // user settable max # bits/code    int maxcode; // maximum code, given n_bits    int maxmaxcode = 1 << BITS; // should NEVER generate this code    int[] htab = new int[HSIZE];    int[] codetab = new int[HSIZE];    int hsize = HSIZE; // for dynamic table sizing    int free_ent = 0; // first unused entry    // block compression parameters -- after all codes are used up,    // and compression rate changes, start over.    boolean clear_flg = false;    // Algorithm: use open addressing double hashing (no chaining) on the    // prefix code / next character combination. We do a variant of Knuth's    // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime    // secondary probe. Here, the modular division first probe is gives way    // to a faster exclusive-or manipulation. Also do block compression with    // an adaptive reset, whereby the code table is cleared when the compression    // ratio decreases, but after the table fills. The variable-length output    // codes are re-sized at this point, and a special CLEAR code is generated    // for the decompressor. Late addition: construct the table according to    // file size for noticeable speed improvement on small files. Please direct    // questions about this implementation to ames!jaw.    int g_init_bits;    int ClearCode;    int EOFCode;    // output    //    // Output the given code.    // Inputs:    // code: A n_bits-bit integer. If == -1, then EOF. This assumes    // that n_bits =< wordsize - 1.    // Outputs:    // Outputs code to the file.    // Assumptions:    // Chars are 8 bits long.    // Algorithm:    // Maintain a BITS character long buffer (so that 8 codes will    // fit in it exactly). Use the VAX insv instruction to insert each    // code in turn. When the buffer fills up empty it and start over.    int cur_accum = 0;    int cur_bits = 0;    int masks[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F,            0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF,            0x7FFF, 0xFFFF };    // Number of characters so far in this 'packet'    int a_count;    // Define the storage for the packet accumulator    byte[] accum = new byte[256];    // ----------------------------------------------------------------------------    LZWEncoder(int width, int height, byte[] pixels, int color_depth) {        imgW = width;        imgH = height;        pixAry = pixels;        initCodeSize = Math.max(2, color_depth);    }    // Add a character to the end of the current packet, and if it is 254    // characters, flush the packet to disk.    void char_out(byte c, OutputStream outs) throws IOException {        accum[a_count++] = c;        if (a_count >= 254)            flush_char(outs);    }    // Clear out the hash table    // table clear for block compress    void cl_block(OutputStream outs) throws IOException {        cl_hash(hsize);        free_ent = ClearCode + 2;        clear_flg = true;        output(ClearCode, outs);    }    // reset code table    void cl_hash(int hsize) {        for (int i = 0; i < hsize; ++i)            htab[i] = -1;    }    void compress(int init_bits, OutputStream outs) throws IOException {        int fcode;        int i /* = 0 */;        int c;        int ent;        int disp;        int hsize_reg;        int hshift;        // Set up the globals: g_init_bits - initial number of bits        g_init_bits = init_bits;        // Set up the necessary values        clear_flg = false;        n_bits = g_init_bits;        maxcode = MAXCODE(n_bits);        ClearCode = 1 << (init_bits - 1);        EOFCode = ClearCode + 1;        free_ent = ClearCode + 2;        a_count = 0; // clear packet        ent = nextPixel();        hshift = 0;        for (fcode = hsize; fcode < 65536; fcode *= 2)            ++hshift;        hshift = 8 - hshift; // set hash code range bound        hsize_reg = hsize;        cl_hash(hsize_reg); // clear hash table        output(ClearCode, outs);        outer_loop: while ((c = nextPixel()) != EOF) {            fcode = (c << maxbits) + ent;            i = (c << hshift) ^ ent; // xor hashing            if (htab[i] == fcode) {                ent = codetab[i];                continue;            } else if (htab[i] >= 0) // non-empty slot            {                disp = hsize_reg - i; // secondary hash (after G. Knott)                if (i == 0)                    disp = 1;                do {                    if ((i -= disp) < 0)                        i += hsize_reg;                    if (htab[i] == fcode) {                        ent = codetab[i];                        continue outer_loop;                    }                } while (htab[i] >= 0);            }            output(ent, outs);            ent = c;            if (free_ent < maxmaxcode) {                codetab[i] = free_ent++; // code -> hashtable                htab[i] = fcode;            } else                cl_block(outs);        }        // Put out the final code.        output(ent, outs);        output(EOFCode, outs);    }    // ----------------------------------------------------------------------------    void encode(OutputStream os) throws IOException {        os.write(initCodeSize); // write "initial code size" byte        remaining = imgW * imgH; // reset navigation variables        curPixel = 0;        compress(initCodeSize + 1, os); // compress and write the pixel data        os.write(0); // write block terminator    }    // Flush the packet to disk, and reset the accumulator    void flush_char(OutputStream outs) throws IOException {        if (a_count > 0) {            outs.write(a_count);            outs.write(accum, 0, a_count);            a_count = 0;        }    }    final int MAXCODE(int n_bits) {        return (1 << n_bits) - 1;    }    // ----------------------------------------------------------------------------    // Return the next pixel from the image    // ----------------------------------------------------------------------------    private int nextPixel() {        if (remaining == 0)            return EOF;        --remaining;        byte pix = pixAry[curPixel++];        return pix & 0xff;    }    void output(int code, OutputStream outs) throws IOException {        cur_accum &= masks[cur_bits];        if (cur_bits > 0)            cur_accum |= (code << cur_bits);        else            cur_accum = code;        cur_bits += n_bits;        while (cur_bits >= 8) {            char_out((byte) (cur_accum & 0xff), outs);            cur_accum >>= 8;            cur_bits -= 8;        }        // If the next entry is going to be too big for the code size,        // then increase it, if possible.        if (free_ent > maxcode || clear_flg) {            if (clear_flg) {                maxcode = MAXCODE(n_bits = g_init_bits);                clear_flg = false;            } else {                ++n_bits;                if (n_bits == maxbits)                    maxcode = maxmaxcode;                else                    maxcode = MAXCODE(n_bits);            }        }        if (code == EOFCode) {            // At EOF, write the rest of the buffer.            while (cur_bits > 0) {                char_out((byte) (cur_accum & 0xff), outs);                cur_accum >>= 8;                cur_bits -= 8;            }            flush_char(outs);        }    }}
package com.example.androidgifmaker;import java.io.File;import java.io.FileOutputStream;import android.annotation.SuppressLint;import android.app.Activity;import android.app.ProgressDialog;import android.content.Intent;import android.graphics.Color;import android.net.Uri;import android.os.Bundle;import android.os.Environment;import android.os.Handler;import android.os.Message;import android.view.Menu;import android.view.MenuItem;import android.widget.TextView;import android.widget.Toast;public class MainActivity extends Activity {    ProgressDialog progressBar;    private TextView tv;    private int count;    @Override    protected void onCreate(Bundle savedInstanceState) {        super.onCreate(savedInstanceState);        setContentView(R.layout.activity_main);        tv = (TextView)findViewById(R.id.text);        new Thread(new TvRunnable()).start();    }    class TvRunnable implements Runnable{        @Override        public void run() {            // TODO Auto-generated method stub            while(true){                count++;                myHandler.sendEmptyMessage(1);                try {                    Thread.sleep(100);                } catch (InterruptedException e) {                    // TODO Auto-generated catch block                    e.printStackTrace();                }            }        }    }    @Override    public boolean onCreateOptionsMenu(Menu menu) {        // Inflate the menu; this adds items to the action bar if it is present.        getMenuInflater().inflate(R.menu.main, menu);        return true;    }    @Override    public boolean onOptionsItemSelected(MenuItem item) {        // TODO Auto-generated method stub        switch (item.getItemId()) {        case R.id.action_settings:            new Thread(new ShootRunnable(2)).start();            break;        default:            break;        }        return super.onOptionsItemSelected(item);    }    class ShootRunnable implements Runnable{        private int second;        private int frameNum = 0;        ShootRunnable(int second){            this.second = second;            ScreenShot.prepareShoot();        }        @Override        public void run() {            // TODO Auto-generated method stub            while(second>0){                while (frameNum<10) {                    long start = System.currentTimeMillis();                    ScreenShot.shoot(MainActivity.this);                    long offset;                    if((offset = (System.currentTimeMillis()-start))<100){                        try {                            Thread.sleep(offset);                        } catch (InterruptedException e) {                            // TODO Auto-generated catch block                            e.printStackTrace();                        }                    }                    frameNum++;                }                second--;                frameNum = 0;            }            myHandler.sendEmptyMessage(0);        }    }    Handler myHandler = new Handler(){        public void handleMessage(Message msg){            switch (msg.what) {            case 0:                makeGif();                break;            case 1:                tv.setText(count+"");                break;            default:                break;            }        };    };    public void makeGif() {        String name = "MyGif";        progressBar = ProgressDialog.show(this, "Converting...", "0%", true, false);        GifThread gt = new GifThread(name);        gt.start();        Toast.makeText(                this,                "You can access the gif in your SD Card storage, under the file Flippy. This directory is: "                        + Environment.getExternalStorageDirectory().toString()                        + "/Gifs",                Toast.LENGTH_LONG).show();    }    private class GifThread extends Thread{        private String name;         private int i;        public GifThread(String proj) { // ONLY WORKS AFTER SAVING                name=proj;        }        @Override         public void run(){            String root = Environment.getExternalStorageDirectory().toString();            File myDir = new File(root + "/Gifs/");            if(!myDir.exists())                myDir.mkdirs();            String fname = name;            File file = new File(myDir, fname + ".gif");            if (file.exists()){                file.delete();            }            try {                FileOutputStream out = new FileOutputStream(file);                AnimatedGifMaker gifs = new AnimatedGifMaker();                gifs.start(out);                gifs.setFrameRate(10);                gifs.setRepeat(0);                gifs.setTransparent(new Color());                for (i = 0; i < ScreenShot.bitmaps.size(); i++) {                    gifs.addFrame(ScreenShot.bitmaps.get(i));                    handler.sendEmptyMessage(1);                }                gifs.finish();                sendBroadcast(new Intent(Intent.ACTION_MEDIA_MOUNTED,                        Uri.parse("file://"                                + Environment.getExternalStorageDirectory()))); // uM                                                                                // HACK            } catch (Exception e) {                e.printStackTrace();            }            handler.sendEmptyMessage(0);        }        @SuppressLint("HandlerLeak")        private Handler handler = new Handler() {            @Override            public void handleMessage(Message msg) {                switch (msg.what) {                case 0:                    progressBar.dismiss();                    break;                case 1:                    progressBar.setMessage(i*100/(ScreenShot.bitmaps.size()-1)+"%");                    break;                default:                    break;                }            }        };    }}
//AndroidManifest.xml权限声明<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/><uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS"/>

3.结果
3.1运行时

3.2生成的gif图

3.3备注
项目生成2秒,每秒10帧的gif图,存储目录在SD卡的Gifs文件夹
4.总结:
4.1完成对当前的activity的内容制作成gif图,甚至可以指定view进行制作,但是制作时不可切换activity
4.2制作时间是根据截图的文件大小决定,由于此处采用原图进行制作,所以耗时较长,可以采用压缩原图方式进行制作,减少制作时间
5.工程源码:https://github.com/HQlin/AndroidGifMaker

更多相关文章

  1. 获取Android(安卓)手机设备信息:包括机型、操作系统版本号、手机
  2. 专题一====Android五种数据存储方式
  3. Android+struts2+JSON方式的手机开发
  4. 庆祝一下,Android视频采集+H264编码成功
  5. Android编译系统(二)Android架构
  6. Android(安卓)studio 如何创建创建第三方库生成自己的jar(Module
  7. Android(安卓)开发,关于依赖库的制作,打包aar,及使用过程
  8. Android的5中数据存储方式
  9. Android(安卓)Studio 设置自动配置git忽略

随机推荐

  1. android 通讯录的增删改查
  2. Android(安卓)中颜色对应的值
  3. Android(安卓)zip文件压缩解压缩
  4. Android(安卓)判断 PendingIntent 是否存
  5. (转载) Android(安卓)Property System
  6. Android(安卓)Spinner的ArrayAdapter和Sp
  7. org.gradle.api.GradleException: Lint f
  8. Android(安卓)Camera照相机
  9. Android(安卓)Framewok引用第三方jar包
  10. android之OnGestureListener实现图片的左