前面部分参考  原文链接:http://www.jianshu.com/p/4bcd4c50fd6b

自己添加了一些觉得有必要补充的知识连接以及个人认为需要的技术补充

这里只是包含android部分,其实,应该还包含java基础部分

0、Android整体架构

谈谈你对android系统(体系)架构的理解


android系统架构图

Linux操作系统为核心,从下往上,依赖关系。

应用程序层:包括系统应用以及第三方应用。

应用程序框架:提供应用开发所必须的一些API框架,是软件复用的重要手段

库:android运行时(核心包(相当于JDK提供的包),虚拟机(优化过的JVM));C/C++的一些库

Linux核心:提供了电源管理、进程调度、内存管理、网络协议栈、驱动模型等核心系统服务

内容详解文章:http://blog.csdn.net/woainijinying/article/details/52475758

android中的四大组件以及应用场景

Activity:在Android应用中负责与用户交互的组件。

Service:常用于为其他组件提供后台服务或者监控其他组件的运行状态。经常用来执行一些耗时操作。

BroadcastReceiver:用于监听应用程序中的其他组件。

ContentProvider:Android应用程序之间实现实时数据交换。

1、Activity的生命周期

生命周期:对象什么时候生,什么时候死,怎么写代码,代码往那里写。

注意:

当打开新的Activity,采用透明主题的时候,当前Activity不会回调onStop

onCreate和onDestroy配对,onStart和onStop配对(是否可见),onResume和onPause配对(是否在前台,可以与用户交互)

打开新的Activity的时候,相关的Log为:

Main1Activity: onPause

Main2Activity: onCreate

Main2Activity: onStart

Main2Activity: onResume

MainA1ctivity: onStop

异常状态下的生命周期:

资源相关的系统配置发生改变或者资源不足:例如屏幕旋转,当前Activity会销毁,并且在onStop之前回调onSaveInstanceState保存数据,在重新创建Activity的时候在onStart之后回调onRestoreInstanceState。其中Bundle数据会传到onCreate(不一定有数据)和onRestoreInstanceState(一定有数据)。

防止屏幕旋转的时候重建,在清单文件中添加配置:    android:configChanges="orientation"

activity生命周期总结:https://www.cnblogs.com/lwbqqyumidi/p/3769113.html

2、Fragment的生命周期

正常启动

    Activity: onCreate

    Fragment: onAttach

    Fragment: onCreate

    Fragment: onCreateView

    Fragment: onActivityCreated

    Activity: onStart

    Activity: onResume

正常退出

    Activity: onPause

    Activity: onStop

    Fragment: onDestroyView

    Fragment: onDestroy

    Fragment: onDetach

    Activity: onDestroy

总结:https://www.jianshu.com/p/7e3aca1eb432

3、Activity的启动模式

standard:每次激活Activity时(startActivity),都创建Activity实例,并放入任务栈;

singleTop:如果某个Activity自己激活自己,即任务栈栈顶就是该Activity,则不需要创建,其余情况都要创建Activity实例;

singleTask:如果要激活的那个Activity在任务栈中存在该实例,则不需要创建,只需要把此Activity放入栈顶,即把该Activity以上的Activity实例都pop,并调用其onNewIntent;

singleInstance:应用1的任务栈中创建了MainActivity实例,如果应用2也要激活MainActivity,则不需要创建,两应用共享该Activity实例。

图文理解的好文章:http://blog.csdn.net/zanelove/article/details/46136145

4、Activity与Fragment之间的传值

通过findFragmentByTag或者getActivity获得对方的引用(强转)之后,再相互调用对方的public方法,但是这样做一是引入了“强转”的丑陋代码,另外两个类之间各自持有对方的强引用,耦合较大,容易造成内存泄漏。

通过Bundle的方法进行传值,例如以下代码:

//Activity中对fragment设置一些参数fragment.setArguments(bundle);//fragment中通过getArguments获得Activity中的方法Bundlearguments= getArguments();

利用eventbus进行通信,这种方法实时性高,而且Activity与Fragment之间可以完全解耦。

//Activity中的代码EventBus.getDefault().post("消息");//Fragment中的代码EventBus.getDefault().register(this); @Subscribepublicvoidtest(String text){    tv_test.setText(text); }

5、Service

Service分为两种:

本地服务,属于同一个应用程序,通过startService来启动或者通过bindService来绑定并且获取代理对象。如果只是想开个服务在后台运行的话,直接startService即可,如果需要相互之间进行传值或者操作的话,就应该通过bindService。

远程服务(不同应用程序之间),通过bindService来绑定并且获取代理对象。

对应的生命周期如下:

    context.startService() ->onCreate()- >onStartCommand()->Service running--调用context.stopService() ->onDestroy()


    context.bindService()->onCreate()->onBind()->Service running--调用>onUnbind() -> onDestroy()

注意

Service默认是运行在main线程的,因此Service中如果需要执行耗时操作(大文件的操作,数据库的拷贝,网络请求,文件下载等)的话应该在子线程中完成。

!特殊情况是:Service在清单文件中指定了在其他进程中运行。

6、Android中的消息传递机制

为什么要使用Handler?

因为屏幕的刷新频率是60Hz,大概16毫秒会刷新一次,所以为了保证UI的流畅性,耗时操作需要在子线程中处理,子线程不能直接对UI进行更新操作。因此需要Handler在子线程发消息给主线程来更新UI。

这里再深入一点,Android中的UI控件不是线程安全的,因此在多线程并发访问UI的时候会导致UI控件处于不可预期的状态。Google不通过锁的机制来处理这个问题是因为:

引入锁会导致UI的操作变得复杂

引入锁会导致UI的运行效率降低

因此,Google的工程师最后是通过单线程的模型来操作UI,开发者只需要通过Handler在不同线程之间切花就可以了。

概述一下Android中的消息机制?

Android中的消息机制主要是指Handler的运行机制。Handler是进行线程切换的关键,在主线程和子线程之间切换只是一种比较特殊的使用情景而已。其中消息传递机制需要了解的东西有Message、Handler、Looper、Looper里面的MessageQueue对象。

如上图所示,我们可以把整个消息机制看作是一条流水线。其中:

MessageQueue是传送带,负责Message队列的传送与管理

Looper是流水线的发动机,不断地把消息从消息队列里面取出来,交给Handler来处理

Message是每一件产品

Handler就是工人。但是这么比喻不太恰当,因为发送以及最终处理Message的都是Handler

为什么在子线程中创建Handler会抛异常?

Handler的工作是依赖于Looper的,而Looper(与消息队列)又是属于某一个线程(ThreadLocal是线程内部的数据存储类,通过它可以在指定线程中存储数据,其他线程则无法获取到),其他线程不能访问。因此Handler就是间接跟线程是绑定在一起了。因此要使用Handler必须要保证Handler所创建的线程中有Looper对象并且启动循环。因为子线程中默认是没有Looper的,所以会报错。

正确的使用方法是:

handler =null;newThread(newRunnable() {privateLooper mLooper;@Overridepublicvoidrun(){//必须调用Looper的prepare方法为当前线程创建一个Looper对象,然后启动循环//prepare方法中实质是给ThreadLocal对象创建了一个Looper对象//如果当前线程已经创建过Looper对象了,那么会报错Looper.prepare();            handler =newHandler();//获取Looper对象mLooper = Looper.myLooper();//启动消息循环Looper.loop();//在适当的时候退出Looper的消息循环,防止内存泄漏mLooper.quit();        }    }).start();

主线程中默认是创建了Looper并且启动了消息的循环的,因此不会报错:

应用程序的入口是ActivityThread的main方法,在这个方法里面会创建Looper,并且执行Looper的loop方法来启动消息的循环,使得应用程序一直运行。

子线程中可以通过Handler发送消息给主线程吗?

可以。有时候出于业务需要,主线程可以向子线程发送消息。子线程的Handler必须按照上述方法创建,并且关联Looper。

7、事件传递机制以及自定义View相关

Android的视图树

Android中View的机制主要是Activity的显示,每个Activity都有一个Window(具体在手机中的实现类是PhoneWindow),Window以下有DecorView,DecorView下面有TitleVie以及ContentView,而ContentView就是我们在Activity中通过setContentView指定的。

事件传分发机制

ViewGroup有以下三个与事件分发的方法,而View只有dispatchTouchEvent和onTouchEvent。

@OverridepublicbooleandispatchTouchEvent(MotionEvent ev){returnsuper.dispatchTouchEvent(ev);    }@OverridepublicbooleanonInterceptTouchEvent(MotionEvent ev){returnsuper.onInterceptTouchEvent(ev);    }@OverridepublicbooleanonTouchEvent(MotionEvent event){returnsuper.onTouchEvent(event);    }

事件总是从上往下进行分发,即先到达Activity,再到达ViewGroup,再到达子View,如果没有任何视图消耗事件的话,事件会顺着路径往回传递。其中:

dispatchTouchEvent是事件的分发方法,如果事件能够到达该视图的话,就首先一定会调用,一般我们不会去修改这个方法。

onInterceptTouchEvent是事件分发的核心方法,表示ViewGroup是否拦截事件,如果返回true表示拦截,在这之后ViewGroup的onTouchEvent会被调用,事件就不会往下传递。

onTouchEvent是最低级的,在事件分发中最后被调用。

子View可以通过requestDisallowInterceptTouchEvent方法去请求父元素不要拦截。

注意

事件从Activity.dispatchTouchEvent()开始传递,只要没有被停止或拦截,从最上层的View(ViewGroup)开始一直往下(子View)传递。子View 可以通过onTouchEvent()对事件进行处理。

事件由父View(ViewGroup)传递给子View,ViewGroup 可以通过onInterceptTouchEvent()对事件做拦截,停止其往下传递。

如果事件从上往下传递过程中一直没有被停止,且最底层子View 没有消费事件,事件会反向往上传递,这时父View(ViewGroup)可以进行消费,如果还是没有被消费的话,最后会到Activity 的onTouchEvent()函数。

如果View 没有对ACTION_DOWN 进行消费,之后的其他事件不会传递过来。

OnTouchListener 优先于onTouchEvent()对事件进行消费。

自定义View的分类

对现有的View的子类进行扩展,例如复写onDraw方法、扩展新功能等。

自定义组合控件,把常用一些控件组合起来以方便使用。

直接继承View实现View的完全定制,需要完成View的测量以及绘制。

自定义ViewGroup,需要复写onLayout完成子View位置的确定等工作。

View的测量-onMeasure

View的测量最终是在onMeasure方法中通过setMeasuredDimension把代表宽高两个MeasureSpec设置给View,因此需要掌握MeasureSpec。MeasureSpec包括大小信息以及模式信息。

MeasureSpec的三种模式:

EXACTLY模式:精确模式,对应于用户指定为match_parent或者具体大小的时候(实际上指定为match_parent实质上是指定大小为父容器的大小)

AT_MOST模式:对应于用户指定为wrap_content,此时控件尺寸只要不超过父控件允许的最大尺寸即可。

UNSPECIFIED模式:不指定大小的测量模式,这种模式比较少用

下面给出模板代码:

publicclassMeasureUtils{/**        * 用于View的测量        *        *@parammeasureSpec        *@paramdefaultSize        *@return*/publicstaticintmeasureView(intmeasureSpec,intdefaultSize){intmeasureSize;//获取用户指定的大小以及模式intmode = View.MeasureSpec.getMode(measureSpec);intsize = View.MeasureSpec.getSize(measureSpec);//根据模式去返回大小if(mode == View.MeasureSpec.EXACTLY) {//精确模式(指定大小以及match_parent)直接返回指定的大小measureSize = size;            }else{//UNSPECIFIED模式、AT_MOST模式(wrap_content)的话需要提供默认的大小measureSize = defaultSize;if(mode == View.MeasureSpec.AT_MOST) {//AT_MOST(wrap_content)模式下,需要取测量值与默认值的最小值measureSize = Math.min(measureSize, defaultSize);                }            }returnmeasureSize;        }    }

最后,复写onMeasure方法,把super方法去掉:

@OverrideprotectedvoidonMeasure(intwidthMeasureSpec,intheightMeasureSpec){        setMeasuredDimension(MeasureUtils.measureView(widthMeasureSpec,200),                MeasureUtils.measureView(heightMeasureSpec,200)        );    }

View的绘制-onDraw

View绘制,需要掌握Android中View的坐标体系:

View的坐标体系是以左上角为坐标原点,向右为X轴正方向,向下为Y轴正方向。

View绘制,主要是通过Android的2D绘图机制来完成,时机是onDraw方法中,其中包括画布Canvas,画笔Paint。下面给出示例代码。相关API不是介绍的重点,重点是Canvas的save和restore方法,通过save以后可以对画布进行一些放大缩小旋转倾斜等操作,这两个方法一般配套使用,其中save的调用次数可以多于restore。

@OverrideprotectedvoidonDraw(Canvas canvas){super.onDraw(canvas);        Bitmap bitmap = ImageUtils.drawable2Bitmap(mDrawable);        canvas.drawBitmap(bitmap, getLeft(), getTop(), mPaint);        canvas.save();//注意,这里的旋转是指画布的旋转canvas.rotate(90);        mPaint.setColor(Color.parseColor("#FF4081"));        mPaint.setTextSize(30);        canvas.drawText("测试",100, -100, mPaint);        canvas.restore();    }

View的位置-onLayout

与布局位置相关的是onLayout方法的复写,一般我们自定义View的时候,只需要完成测量,绘制即可。如果是自定义ViewGroup的话,需要做的就是在onLayout中测量自身以及控制子控件的布局位置,onLayout是自定义ViewGroup必须实现的方法。

8、性能优化

布局优化

使用include标签,通过layout属性复用相同的布局。

使用merge标签,去除同类的视图

使用ViewStub来进行布局的延迟加载一些不是马上就用到的布局。例如列表页中,列表在没有拿到数据之前不加载,这样做可以使UI变得流畅。

//需要手动调用inflate方法,布局才会显示出来。stub.inflate();//其中setVisibility在底层也是会调用inflate方法//stub.setVisibility(View.VISIBLE);//之后,如果要使用ViewStub标签里面的View,只需要按照平常来即可。TextView tv_1 = (TextView) findViewById(R.id.tv_1);

尽量多使用RelativeLayout,因为这样可以大大减少视图的层级。

内存优化

APP设计以及代码编写阶段都应该考虑内存优化:

珍惜Service,尽量使得Service在使用的时候才处于运行状态。尽量使用IntentService

IntentService在内部其实是通过线程以及Handler实现的,当有新的Intent到来的时候,会创建线程并且处理这个Intent,处理完毕以后就自动销毁自身。因此使用IntentService能够节省系统资源。

内存紧张的时候释放资源(例如UI隐藏的时候释放资源等)。复写Activity的回调方法。

@OverridepublicvoidonLowMemory(){super.onLowMemory(); }@OverridepublicvoidonTrimMemory(intlevel){super.onTrimMemory(level);switch(level) {caseTRIM_MEMORY_COMPLETE://...break;case其他:    } }

通过Manifest中对Application配置更大的内存,但是一般不推荐

android:largeHeap="true"

避免Bitmap的浪费,应该尽量去适配屏幕设备。尽量使用成熟的图片加载框架,Picasso,Fresco,Glide等。

使用优化的容器,SparseArray等

其他建议:尽量少用枚举变量,尽量少用抽象,尽量少增加类,避免使用依赖注入框架,谨慎使用library,使用代码混淆,时当场合考虑使用多进程等。

避免内存泄漏(本来应该被回收的对象没有被回收)。一旦APP的内存短时间内快速增长或者GC非常频繁的时候,就应该考虑是否是内存泄漏导致的。

分析方法

1. 使用Android Studio提供的Android Monitors中Memory工具查看内存的使用以及没使用的情况。

2. 使用DDMS提供的Heap工具查看内存使用情况,也可以手动触发GC。

3. 使用性能分析的依赖库,例如Square的LeakCanary,这个库会在内存泄漏的前后通过Notification通知你。

什么情况会导致内存泄漏

资源释放问题:程序代码的问题,长期保持某些资源,如Context、Cursor、IO 流的引用,资源得不到释放造成内存泄露。

对象内存过大问题:保存了多个耗用内存过大的对象(如Bitmap、XML 文件),造成内存超出限制。

static 关键字的使用问题:static 是Java 中的一个关键字,当用它来修饰成员变量时,那么该变量就属于该类,而不是该类的实例。所以用static 修饰的变量,它的生命周期是很长的,如果用它来引用一些资源耗费过多的实例(Context 的情况最多),这时就要谨慎对待了。

解决方案1.应该尽量避免static成员变量引用资源耗费过多的实例,比如Context。2.Context 尽量使用ApplicationContext,因为Application 的Context 的生命周期比较长,引用它不会出现内存泄露的问题。3.使用WeakReference 代替强引用。比如可以使用WeakReference mContextRef

线程导致内存溢出:线程产生内存泄露的主要原因在于线程生命周期的不可控。例如Activity中的Thread在run了,但是Activity由于某种原因重新创建了,但是Thread仍然会运行,因为run方法不结束的话Thread是不会销毁的。

解决方案

1. 将线程的内部类,改为静态内部类(因为非静态内部类拥有外部类对象的强引用,而静态类则不拥有)。

2. 在线程内部采用弱引用保存Context 引用。

查看内存泄漏的方法、工具

android官方提供的工具:Memory Monitor(当APP占用的内存在短时间内快速增长或者GC变得频繁的时候)、DDMS提供的Heap工具(手动触发GC)

Square提供的内存泄漏检测工具,LeakCanary(能够自动完成内存追踪、检测、输出结果),进行演示,并且适当的解说。

性能优化

防止过度绘制,通过打开手机的“显示过度绘制区域”即可查看过度绘制的情况。

最小化渲染时间,使用视图树查看节点,对节点进行性能分析。

通过TraceView进行数据的采集以及分析。在有大概定位的时候,使用Android官方提供的Debug类进行采集。最后通过DDMS即可打开这个.trace文件,分析函数的调用情况(包括在指定情况下执行时间,调用次数)

//开启数据采集Debug.startMethodTracing("test.trace");//关闭Debug.stopMethodTracing();

OOM

避免OOM的一些常见方法:

App资源中尽量少用大图。使用Bitmap的时候要注意等比例缩小图片,并且注意Bitmap的回收。

BitmapFactory.Options options =newBitmapFactory.Option(); options.inSampleSize =2;//Options 只保存图片尺寸大小,不保存图片到内存BitmapFactory.Options opts =newBitmapFactory.Options(); opts.inSampleSize =2; Bitmap bmp =null; bmp = BitmapFactory.decodeResource(getResources(), mImageIds[position],opts);//回收bmp.recycle();

结合组件的生命周期,释放资源

IO流,数据库查询的游标等应该在使用完之后及时关闭。

ListView中应该使用ViewHolder模式缓存ConverView

页面切换的时候尽量去传递(复用)一些对象

ANR

不同的组件发生ANR 的时间不一样,主线程(Activity、Service)是5 秒,BroadCastReceiver 是10 秒。

ANR一般有三种类型:

KeyDispatchTimeout(5 seconds)

主要类型按键或触摸事件在特定时间内无响应

BroadcastTimeout(10 seconds)

BroadcastReceiver在特定时间内无法处理完成

ServiceTimeout(20 seconds)

小概率类型Service在特定的时间内无法处理完成

解决方案: 1.UI线程只进行UI相关的操作。所有耗时操作,比如访问网络,Socket通信,查询大量SQL语句,复杂逻辑计算等都放在子线程中去,然后通过handler.sendMessage、runonUITread、AsyncTask等方式更新UI。 2. 无论如何都要确保用户界面操作的流畅度。如果耗时操作需要让用户等待,那么可以在界面上显示进度条。 3.BroadCastReceiver要进行复杂操作的的时候,可以在onReceive()方法中启动一个Service来处理。

9、九切图(.9图)、SVG图片

九切图

点九图,是Android开发中用到的一种特殊格式的图片,文件名以”.9.png“结尾。这种图片能告诉程序,图像哪一部分可以被拉升,哪一部分不能被拉升需要保持原有比列。运用点九图可以保证图片在不模糊变形的前提下做到自适应。点九图常用于对话框背景图片中。

1、2部分规定了图像的可拉伸部分,当实际程序中设定了对话框的宽高时,1、2部分就会被拉伸成所需要的高和宽,呈现出于设计稿一样的视觉效果。

而3、4部分规定了图像的内容区域。内容区域规定了可编辑区域,例如文字需要被包裹在其内。

android5.0的SCG矢量动画机制

图像在方法缩小的时候图片质量不会有损失

使用XML来定义图形

适配不同分辨率

10、Android中数据常见存储方式

文件(包括XML、SharePreference等)

数据库

Content Provider

保存在网络

11、进程间通信

操作系统进程间通信的方法,android中有哪些?

操作系统:

Windows:剪贴板、管道、邮槽等

Linux:命名管道、共享内存、信号量

Android中的进程通信方式并不是完全继承于Linux:

Bundle

文件共享

AIDL

Messenger

Content Provider

Socket

12、常见的网络框架

常用的http框架以及他们的特点

HttpURLConnection:在Android 2.2版本之前,HttpClient拥有较少的bug,因此使用它是最好的选择。而在Android 2.3版本及以后,HttpURLConnection则是最佳的选择。它的API简单,体积较小,因而非常适用于Android项目。压缩和缓存机制可以有效地减少网络访问的流量,在提升速度和省电方面也起到了较大的作用。对于新的应用程序应该更加偏向于使用HttpURLConnection,因为在以后的工作当中我们也会将更多的时间放在优化HttpURLConnection上面。特点:比较轻便,灵活,易于扩展,在3.0后以及4.0中都进行了改善,如对HTTPS的支持,在4.0中,还增加了对缓存的支持。

HttpClient:高效稳定,但是维护成本高昂,故android 开发团队不愿意在维护该库而是转投更为轻便的

okHttp:okhttp 是一个 Java 的 HTTP+SPDY 客户端开发包,同时也支持 Android。需要Android 2.3以上。特点:OKHttp是Android版Http客户端。非常高效,支持SPDY、连接池、GZIP和 HTTP 缓存。默认情况下,OKHttp会自动处理常见的网络问题,像二次连接、SSL的握手问题。如果你的应用程序中集成了OKHttp,Retrofit默认会使用OKHttp处理其他网络层请求。从Android4.4开始HttpURLConnection的底层实现采用的是okHttp。

volley:早期使用HttpClient,后来使用HttpURLConnection,是谷歌2013年推出的网络请求框架,非常适合去进行数据量不大,但通信频繁的网络操作,而对于大数据量的网络操作,比如说下载文件等,Volley的表现就会非常糟糕。

xutils:缓存网络请求数据

Retrofit:和Volley框架的请求方式很相似,底层网络请求采用okhttp(效率高,android4.4底层采用okhttp),采用注解方式来指定请求方式和url地址,减少了代码量。

AsyncTask

13、常用的图片加载框架以及特点、源码

Picasso:PicassoSquare的网络库一起能发挥最大作用,因为Picasso可以选择将网络请求的缓存部分交给了okhttp实现。

Glide:模仿了Picasso的API,而且在他的基础上加了很多的扩展(比如gif等支持),支持图片流,因此在做爱拍之类的视频应用用得比较多一些。

Fresco:Fresco中设计有一个叫做image pipeline的模块。它负责从网络,从本地文件系统,本地资源加载图片。 为了最大限度节省空间和CPU时间,它含有3级缓存设计(2级内存,1级文件)。Fresco中设计有一个叫做Drawees模块, 方便地显示loading图,当图片不再显示在屏幕上时,及时地释放内存和空间占用。

Fresco是把图片缓存放在了Ashmem(系统匿名内存共享区)

Heap-堆内存:Android中每个App的 Java堆内存大小都是被严格的限制的。每个对象都是使用Java的new在堆内存实例化,这是内存中相对安全的一块区域。内存有垃圾回收机制,所以当 App不在使用内存的时候,系统就会自动把这块内存回收。不幸的是,内存进行垃圾回收的过程正是问题所在。当内存进行垃圾回收时,内存不仅仅进行了垃圾回收,还把 Android 应用完全终止了。这也是用户在使用 App 时最常见的卡顿或短暂假死的原因之一。

Ashmem:Android 在操作 Ashmem 堆时,会把该堆中存有数据的内存区域从 Ashmem 堆中抽取出来,而不是把它释放掉,这是一种弱内存释放模式;被抽取出来的这部分内存只有当系统真正需要更多的内存时(系统内存不够用)才会被释放。当 Android 把被抽取出来的这部分内存放回 Ashmem 堆,只要被抽取的内存空间没有被释放,之前的数据就会恢复到相应的位置。

不管发生什么,垃圾回收器都不会自动回收这些 Bitmap。当 Android 绘制系统在渲染这些图片,Android 的系统库就会把这些 Bitmap 从 Ashmem 堆中抽取出来,而当渲染结束后,这些 Bitmap 又会被放回到原来的位置。如果一个被抽取的图片需要再绘制一次,系统仅仅需要把它再解码一次,这个操作非常迅速。

14、在Android开发里用什么做线程间的通讯工具?

传统点的方法就是往同步代码块里些数据,然后使用回调让另外一条线程去读。在Android里我一般会创建Looper线程,然后Hanlder传递消息。

15、Android新特性相关

5.0:Material Design、多种设备的支持、支持64位ART虚拟机、Project Volta电池续航改进计划等

6.0:动态权限管理、过度动画、支付、指纹等

7.0:分屏、通知消息快捷回复、夜间模式、流量保护模式等

16、网络请求优化

网络请求优化

能够缓存起来的尽量去缓存起来,减轻服务器的压力。例如APP中首页的一些数据,又例如首页的图标、文案都是缓存起来的,而且这些数据通过网络来指定可以使app具有更大的灵活性。

不用域名,用 IP 直连,省去了DNS域名解析。

连接复用、请求合并、请求数据Body可以利用压缩算法Gzip来进行压缩,使用JSON 代替 XML

网络请求的安全性

这块了解的不多。我给你说说我的思路吧,利用哈希算法,比如MD5,服务器给我们的数据可以通过时间戳和其他参数做个加密,得到一个key,在客户端取出数据后根据数据和时间戳再去生成key与服务端给的做个对比。

17、新技术相关

RXJava:一个异步请求库,核心就是异步。利用的是一种扩展的观察模式,被观察者发生某种变化的时候,可以通过事件(onNext、onError、onComplete)等方式通过观察者。RXJava同时支持线程的调度和切换,用户可以指定订阅发生的线程以及观察者触发的线程。

Retrofit:通过注解的方式来指定URL、请求方法,实质上底层是通过OKHttp来实现的。

HotFit

自己更新补充

1,MVP框架

2,动画

3,屏幕适配

4,设计模式

5,热修复

6,组件化

更多相关文章

  1. Android(安卓)View 事件分发机制 源码解析(ViewGroup篇)
  2. Android(安卓)Window和WindowManager(Android开发艺术随笔)
  3. 关于Android四大组件之一Activity
  4. Android的handler机制浅谈
  5. android上执行UI交互的junit方法
  6. react-native调用Android的原生方法
  7. Android(安卓)网络图片异步加载实例
  8. Android(安卓)OpenGL ES 1.x 教程的Native实现
  9. Android命令行启动程序的方法

随机推荐

  1. Android(安卓)推送之原理与初触Androidpn
  2. [原] Android中怎么将图片平铺
  3. 摘要:HenCoder Android(安卓)自定义 View
  4. 如何把React Native嵌入到原生android应
  5. Android新技术------Android(安卓)App Bu
  6. Android源码下载及开发环境的搭建
  7. Android(安卓)ViewPager 打造炫酷欢迎页
  8. android中定时-开“关机”的实现
  9. android各种ui效果库
  10. Android(安卓)4.0 消息广播无法接收的原