本篇Android消息机制的原理,包括四个方面ThreadLocal、MessageQueue、Looper和Handler,会通过消息机制流程来分析理解。

简介

由于所有UI操作都必须在主线程中完成,所以我们有时候在子线程得到的数据后需要转化到主线程去更改UI,而这就是Android提供消息机制的原因。这里有个细节,为什么UI操作必须要在主线程完成呢?其中最主要的原因是我们的View并不是线程安全的。这又有一个问题了,为什么不给View加锁呢?因为它会让View的访问变得复杂,而且会降低UI的访问效率,锁是会阻塞某些线程的执行,而使用单线程就可以避免这两个问题,然后使用Handler转换线程也不麻烦。

下面就进入正题,其实消息机制最主要的就是Handler、Looper以及MessageQueue,我简单的理了个消息机制的流程图,如下:

下面我们会根据这个流程去解读源码。

消息机制流程源码分析

Looper.prepare()

看了上边的流程图,发现我们自己在主线程中使用handler好像没有直接操作过Looper呀?其实在界面创建之前系统已经给我们初始化了Looper,源码在ActivityThread中的main方法中,如下:

public static void main(String[] args) {    Looper.prepareMainLooper();    ActivityThread thread = new ActivityThread();    thread.attach(false);    if (sMainThreadHandler == null) {        sMainThreadHandler = thread.getHandler();    }    Looper.loop();}

其中去掉了些这里不涉及的代码,可以看到其实主线程还是走了这个流程的,其中有一点不一样的地方,是主线程的looper是单独存起来的,来看源码:

public static void prepareMainLooper() {    prepare(false);    synchronized (Looper.class) {        if (sMainLooper != null) {            throw new IllegalStateException("The main Looper has already been prepared.");        }    sMainLooper = myLooper();}private static void prepare(boolean quitAllowed) {    if (sThreadLocal.get() != null) {        throw new RuntimeException("Only one Looper may be created per thread");    }    sThreadLocal.set(new Looper(quitAllowed));}private Looper(boolean quitAllowed) {    mQueue = new MessageQueue(quitAllowed);    mThread = Thread.currentThread();}MessageQueue(boolean quitAllowed) {    mQuitAllowed = quitAllowed;    mPtr = nativeInit();}

第一步prepare主要就做了两个事,在threadLocal中设置Looper,Looper中初始化MessageQueue;这里有个知识点,ThreadLocal是如何让不同线程的Looper都不一样的,如果不看系统的实现方式,我们也能大体想到,使用一个Map去存,key就是线程,value就是Looper,这样我们就能保证不同线程Looper不一样,且同一线程只有一个Looper了,这里就深入一步查看一下ThreadLocal的源码:

public void set(T value) {    Thread t = Thread.currentThread();    ThreadLocalMap map = getMap(t);    if (map != null)        map.set(this, value);    else        createMap(t, value);}void createMap(Thread t, T firstValue) {    t.threadLocals = new ThreadLocalMap(this, firstValue);}ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {    table = new Entry[INITIAL_CAPACITY];    int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);    table[i] = new Entry(firstKey, firstValue);    size = 1;    setThreshold(INITIAL_CAPACITY);}Entry(ThreadLocal k, Object v) {    super(k);    value = v;}private void set(ThreadLocal key, Object value) {    // We don't use a fast path as with get() because it is at    // least as common to use set() to create new entries as    // it is to replace existing ones, in which case, a fast    // path would fail more often than not.    Entry[] tab = table;    int len = tab.length;    int i = key.threadLocalHashCode & (len-1);    for (Entry e = tab[i];         e != null;         e = tab[i = nextIndex(i, len)]) {        ThreadLocal k = e.get();        if (k == key) {            e.value = value;            return;        }        if (k == null) {            replaceStaleEntry(key, value, i);            return;        }    }    tab[i] = new Entry(key, value);    int sz = ++size;    if (!cleanSomeSlots(i, sz) && sz >= threshold)        rehash();}

这段代码是刚才ThreadLocal保存Looper所调用的代码,大体含义还是比较简单,就是存入一个Entry数组中,每一项都有自己的key和value,其中索引是用一个hashCode和这个数组的长度进行&运算的来的。这样就会让查询变得便利,其实HashMap就是类似的储存方式。

然后再看看ThreadLocal的get方法:

public T get() {    Thread t = Thread.currentThread();    ThreadLocalMap map = getMap(t);    if (map != null) {    ThreadLocalMap.Entry e = map.getEntry(this);    if (e != null)        return (T) e.value;    }    return setInitialValue();}private T setInitialValue() {    T value = initialValue();    Thread t = Thread.currentThread();    ThreadLocalMap map = getMap(t);    if (map != null)        map.set(this, value);    else        createMap(t, value);    return value;}ThreadLocalMap getMap(Thread t) {    return t.threadLocals;}private Entry getEntry(ThreadLocal key) {    int i = key.threadLocalHashCode & (table.length - 1);    Entry e = table[i];    if (e != null && e.get() == key)        return e;    else        return getEntryAfterMiss(key, i, e);}private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {    Entry[] tab = table;    int len = tab.length;    while (e != null) {        ThreadLocal k = e.get();        if (k == key)            return e;        if (k == null)            expungeStaleEntry(i);        else            i = nextIndex(i, len);        e = tab[i];    }    return null;}

这样看来,其实ThreadLocal的功能就是类似HashMap一样,存取都是通过key,数据结构使用数组,所以是通过key的hashCode与数组长度的到。

这样对ThreadLocal应该就有了一定的了解了。

下一步。

创建Handler

创建Handler的方式有很多,但是最终不外乎两种,传入Looper和不传入Looper;如下:

不传Looper

public Handler(Callback callback, boolean async) {    if (FIND_POTENTIAL_LEAKS) {        final Class<? extends Handler> klass = getClass();        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&                (klass.getModifiers() & Modifier.STATIC) == 0) {            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +                    klass.getCanonicalName());        }    }    mLooper = Looper.myLooper();    if (mLooper == null) {        throw new RuntimeException(                "Can't create handler inside thread that has not called Looper.prepare()");    }    mQueue = mLooper.mQueue;    mCallback = callback;    mAsynchronous = async;}

传入Looper

public Handler(Looper looper, Callback callback, boolean async) {    mLooper = looper;    mQueue = looper.mQueue;    mCallback = callback;    mAsynchronous = async;}

其作用在于在handler中的得到Looper对象以及其MessageQueue,然后另外还有回调等数据。便于用户直接操作这一个类就可以了。

Looper.loop()

直接上代码看看该方法做了哪些操作

public static void loop() {    final Looper me = myLooper();    if (me == null) {        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");    }    final MessageQueue queue = me.mQueue;    for (;;) {        Message msg = queue.next(); // might block        if (msg == null) {            return;        }                try {            msg.target.dispatchMessage(msg);        } finally {            if (traceTag != 0) {                Trace.traceEnd(traceTag);            }        }        msg.recycleUnchecked();    }}Message next() {    final long ptr = mPtr;    if (ptr == 0) {        return null;    }    int pendingIdleHandlerCount = -1; // -1 only during first iteration    int nextPollTimeoutMillis = 0;    for (;;) {        if (nextPollTimeoutMillis != 0) {            Binder.flushPendingCommands();        }        nativePollOnce(ptr, nextPollTimeoutMillis);        synchronized (this) {            // Try to retrieve the next message.  Return if found.            final long now = SystemClock.uptimeMillis();            Message prevMsg = null;            Message msg = mMessages;            if (msg != null && msg.target == null) {                // Stalled by a barrier.  Find the next asynchronous message in the queue.                do {                    prevMsg = msg;                    msg = msg.next;                } while (msg != null && !msg.isAsynchronous());            }            if (msg != null) {                if (now < msg.when) {                    // Next message is not ready.  Set a timeout to wake up when it is ready.                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);                } else {                    // Got a message.                    mBlocked = false;                    if (prevMsg != null) {                        prevMsg.next = msg.next;                    } else {                        mMessages = msg.next;                    }                    msg.next = null;                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);                    msg.markInUse();                    return msg;                }            } else {                // No more messages.                nextPollTimeoutMillis = -1;            }            // Process the quit message now that all pending messages have been handled.            if (mQuitting) {                dispose();                return null;            }           //其他代码...        }    }}public void dispatchMessage(Message msg) {    if (msg.callback != null) {        handleCallback(msg);    } else {        if (mCallback != null) {            if (mCallback.handleMessage(msg)) {                return;            }        }        handleMessage(msg);    }}private static void handleCallback(Message message) {    message.callback.run();}public void handleMessage(Message msg) {}

去掉了一些其他代码,可以看到loop这个方法是有一个死循环,只有在MeesageQueue的next返回null时,才会结束Looper的循环;而MessageQueue的next方法也是一个死循环,只有当mQuitting为true时返回null,其他时候都在循环中,当有要处理的消息时,就返回该Message,然后交给相应的Handler去处理,里边会判断callback是否为空,来判断是post的消息还是send的消息,然后再分别处理,而send的消息需要我们自己重写handleMessage方法去实现消息处理,而具体发送消息会在下文说到。

这里边涉及到的MessageQueue的数据结构其实是使用链式存储,具体的方式下文再分解,这里先知道大体流程。

Handler发送消息

Handler发送消息有两种方式:

  • sendMessage(Message)
  • post(Runnable)

其实他们两个方法最后都是转化成Mesasge去实现,来直接看源码。

public final boolean sendMessage(Message msg) {    return sendMessageDelayed(msg, 0);}public final boolean sendMessageDelayed(Message msg, long delayMillis) {    if (delayMillis < 0) {        delayMillis = 0;    }    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);}public boolean sendMessageAtTime(Message msg, long uptimeMillis) {    MessageQueue queue = mQueue;    if (queue == null) {        RuntimeException e = new RuntimeException(                this + " sendMessageAtTime() called with no mQueue");        Log.w("Looper", e.getMessage(), e);        return false;    }    return enqueueMessage(queue, msg, uptimeMillis);}private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {    msg.target = this;    if (mAsynchronous) {        msg.setAsynchronous(true);    }    return queue.enqueueMessage(msg, uptimeMillis);}boolean enqueueMessage(Message msg, long when) {    if (msg.target == null) {        throw new IllegalArgumentException("Message must have a target.");    }    if (msg.isInUse()) {        throw new IllegalStateException(msg + " This message is already in use.");    }    synchronized (this) {        if (mQuitting) {            IllegalStateException e = new IllegalStateException(                    msg.target + " sending message to a Handler on a dead thread");            Log.w(TAG, e.getMessage(), e);            msg.recycle();            return false;        }        msg.markInUse();        msg.when = when;        Message p = mMessages;        boolean needWake;        if (p == null || when == 0 || when < p.when) {            // New head, wake up the event queue if blocked.            msg.next = p;            mMessages = msg;            needWake = mBlocked;        } else {            // Inserted within the middle of the queue.  Usually we don't have to wake            // up the event queue unless there is a barrier at the head of the queue            // and the message is the earliest asynchronous message in the queue.            needWake = mBlocked && p.target == null && msg.isAsynchronous();            Message prev;            for (; ; ) {                prev = p;                p = p.next;                if (p == null || when < p.when) {                    break;                }                if (needWake && p.isAsynchronous()) {                    needWake = false;                }            }            msg.next = p; // invariant: p == prev.next            prev.next = msg;        }        // We can assume mPtr != 0 because mQuitting is false.        if (needWake) {            nativeWake(mPtr);        }    }    return true;}

下面是post的源码,也就在第一步在构造Message对象,然后后边就一样了。

public final boolean post(Runnable r) {    return sendMessageDelayed(getPostMessage(r), 0);}private static Message getPostMessage(Runnable r) {    Message m = Message.obtain();    m.callback = r;    return m;}

这里的post和send消息都还有其他的一些方法,比如延时发送,比如发送一个空消息,等等但是归根结底都是调用了enqueueMessage方法,来加入到MessageQueue中。

然后Looper的loop方法在需要处理的时候就能得到该消息,并处理。而这其中最主要的是,需要理解怎么加入到MessageQueue的。

所以我们需要先理解其存储结构,可以看到,Message.next属性,也是Message类型的,所以可以猜到应该是使用了链式存储,所以它并不是一个队列。

再来看一下enqueueMessage方法,这里跟一下代码:

当是第一条Message传入时,可以知道mMessages为空,所以进入if,然后让传入的msg.next = p, mMessages = msg,即当前消息的后一条时空,mMessages为第一条消息;

假设第一条的when是5,这时候第二条消息进入,when是10;所以会进入else,然后再进入循环遍历后加入到链表的最后;

这时候第三条消息进入,when是8;这时候还是会第三条消息的when比第一条消息的when大,所以还是会进入else,循环之后,发现不用加到最后,因为第三条的when小于第二条的when,就break了,这时候就插入到了第二条。

这时候链表的顺序就为:消息1->消息3->消息3。

最后再提供一个WeakHandler的源码,它能避免内存泄漏,原理是采用了弱引用。

import android.os.Handler;import android.os.Message;import net.arvin.afbaselibrary.listeners.IWeakHandler;import java.lang.ref.WeakReference;public class WeakHandler extends Handler {    private WeakReference mActivity;    public WeakHandler(IWeakHandler activity) {        mActivity = new WeakReference<>(activity);    }    @Override    public void handleMessage(Message msg) {        if (mActivity != null) {            IWeakHandler weakHandleInterface = mActivity.get();            if (weakHandleInterface != null) {                weakHandleInterface.handleMessage(msg);            }        }    }}//回调接口IWeakHandlerimport android.os.Message;public interface IWeakHandler {    void handleMessage(Message msg);}

至此,整个消息的流程就基本分析完了。

更多相关文章

  1. Android四大组件:Service史上最全面解析
  2. Android(安卓)App 中简易的网络数据处理方法
  3. Android架构组件(一):Lifecycle
  4. android Gallery镜像倒影特效另一种方法
  5. Android@Kotlin 在Android(安卓)studio 中配置Kotlin
  6. [置顶] Android上传文件到Web服务器,PHP接收文件(一)
  7. Android集成微信支付功能
  8. Android开发之AlarmManager的用法详解
  9. Kotlin, Android的Swift

随机推荐

  1. 基于unity3d游戏的android版本逆向初探
  2. Android初级教程八——TextView编程实现
  3. Litepal的简单使用
  4. Android(安卓)锁屏状态下拉起某个页面
  5. Android(安卓)多线程之HandlerThread 完
  6. Andriod软键盘出现把原来的布局给顶上去
  7. WebView Android(安卓)调用js且需要获取
  8. Android判断后台Service服务是否运行,获取
  9. Android(安卓)面试之常用开源库
  10. V4包下Fragment替换为源码下Fragment的心