最近一时兴起,想对Android的启动流程进行一次分析,经过一番整理,从以下几个方面进行总结,代码部分只讨论思路,不论细节。

  1. Android架构介绍
  2. Android启动概述
  3. BootLoader介绍
  4. Kernel初始化介绍
  5. Init初始化介绍
  6. Zygote启动介绍
  7. SystemServer启动介绍
  8. Launcher启动介绍
  9. Log抓取与分析方法

由于发表文章的时候提示内容过长无法发布,于是把文章拆成了三部分发布:

  1. Android启动流程简析(一)
  2. Android启动流程简析(二)
  3. Android启动流程简析(三)

1. Android架构介绍

Android的架构可以从架构图得知,主要分四层:

Android经典的四层架构图 Android架构图

每一层的作用不做介绍,这里主要讲涉及的镜像有boot.img、system.img、vendor.img、recovery.img、userdata.img、cache.img,与平台相关的镜像有lk.bin(MTK)、preloader.img(MTK)、logo.bin(MTK)、emmc_appsboot.mbn(QCOM)、splash.img(QCOM)等,通常来说,修改kernel层通常编译boot.img即可,修改Framework层或Native层主要是编译system.img,在Android O之后修改某些模块还需要编译vendor.img,主要是受Android O Treble的影响,具体问题需要具体分析。

2. Android启动概述

概述:Loader > Kernel > Native > Framework > Application

细分:BootRom > Bootloader > Kernel > Init > Zygote > SystemServer > Launcher

  • Loader层主要包括Boot Rom和Boot Loader
  • Kernel层主要是Android内核层
  • Native层主要是包括init进程以及其fork出来的用户空间的守护进程、HAL层、开机动画等
  • Framework层主要是AMS和PMS等Service的初始化
  • Application层主要指SystemUI、Launcher的启动

3. BootLoader介绍

Bootloader 就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。

调用流程:
crt0.S > kmain > arch_init > target_init > apps_init > aboot_init

3.1 crt0.S

  • 高通平台:alps/bootable/bootloader/lk/arch/{paltform}/crt0.S
  • MTK平台:alps/vendor/mediatek/proprietary/bootable/bootloader/lk/arch/{paltform}/crt0.S

platform主要有arm、arm64、x86、x86-64等,crt0.S代码大体如下,在_start中先主要完成CPU初始化,禁用mmu,禁用cache,初始化异常向量表等操作,最后将直接跳转到函数kmain中

.section ".text.boot".globl _start_start:    b   reset    b   arm_undefined    b   arm_syscall    b   arm_prefetch_abort    b   arm_data_abort    b   arm_reserved    b   arm_irq    b   arm_fiq/*pre-loader to uboot argument Location*/.global BOOT_ARGUMENT_LOCATIONBOOT_ARGUMENT_LOCATION:        .word 0x00000000    ...#if (!ENABLE_NANDWRITE)#if WITH_CPU_WARM_BOOT    ldr     r0, warm_boot_tag    cmp     r0, #1    /* if set, warm boot */    ldreq   pc, =BASE_ADDR    mov     r0, #1    str r0, warm_boot_tag#endif#endif    ...#if defined(ARM_CPU_CORTEX_A8) || defined(ARM_CPU_CORTEX_A9)    DSB    ISB#endif    bl      kmain    b       .

3.2 kmain

  • 高通平台:alps/bootable/bootloader/lk/kernel/main.c
  • MTK平台:alps/vendor/mediatek/proprietary/bootable/bootloader/lk/kernel/main.c
/* called from crt0.S */void kmain(void) __NO_RETURN __EXTERNALLY_VISIBLE;void kmain(void){#if !defined(MACH_FPGA) && !defined(SB_LK_BRINGUP)    boot_time = get_timer(0);#endif    // get us into some sort of thread context    thread_init_early();    // early arch stuff    arch_early_init();    // do any super early platform initialization    platform_early_init();#if defined(MACH_FPGA) || defined(SB_LK_BRINGUP)    boot_time = get_timer(0);#endif    // do any super early target initialization    target_early_init();    dprintf(INFO, "welcome to lk\n\n");    // deal with any static constructors    dprintf(SPEW, "calling constructors\n");    call_constructors();    // bring up the kernel heap    dprintf(SPEW, "initializing heap\n");    heap_init();    // initialize the threading system    dprintf(SPEW, "initializing threads\n");    thread_init();    // initialize the dpc system    dprintf(SPEW, "initializing dpc\n");    dpc_init();    // initialize kernel timers    dprintf(SPEW, "initializing timers\n");    timer_init();#ifdef  MTK_LK_IRRX_SUPPORT    mtk_ir_init(0);#endif#if (!ENABLE_NANDWRITE)    // create a thread to complete system initialization    dprintf(SPEW, "creating bootstrap completion thread\n");    thread_t *thread_bs2 = thread_create("bootstrap2", &bootstrap2, NULL,    DEFAULT_PRIORITY, DEFAULT_STACK_SIZE);    if (thread_bs2)        thread_resume(thread_bs2);    else {        dprintf(CRITICAL, "Error: Cannot create bootstrap2 thread!\n");        assert(0);    }    thread_t *thread_io = thread_create("iothread", &iothread, NULL,    IO_THREAD_PRIORITY, DEFAULT_STACK_SIZE);    if (thread_io)        thread_resume(thread_io);    else {        dprintf(CRITICAL, "Error: Cannot create I/O thread!\n");       assert(0);    }    // enable interrupts    exit_critical_section();    // become the idle thread    thread_become_idle();#else    bootstrap_nandwrite();#endif}

kmain主要流程:

  1. 调用thread_init_early初始化线程系统
  2. 调用arch_early_init中判断如果存在mmu就初始化,设置异常向量基地址,使能中断相关寄存器
  3. 在platform_early_init中完成初始化硬件时钟、手机的主板等操作,这个函数每种cpu的实现都不一样,定义在bootable\bootloader\lk\platform{cpu型号}\platform.c下
  4. target_early_init中完成初始化uart端口的操作,这个函数的实现在bootable\bootloader\lk\target{cpu型号}\init.c
  5. 调用函数heap_init完成内核堆栈的初始化,用与kmalloc等函数的内存分配
  6. 在thread_init函数中初始化定时器
  7. 调用timer_init初始化内核定时器
  8. 如果没有定义ENABLE_NANDWRITE,就创建出一个名为bootstrap2的线程,然后运行这个线程。退出临界区,开中断;如果定义了ENABLE_NANDWRITE,在timer_init之后将执行bootstrap_nandwrite

3.3 bootstrap2

static int bootstrap2(void *arg){    dprintf(SPEW, "top of bootstrap2()\n");    print_stack_of_current_thread();    arch_init();// XXX put this somewhere else#if WITH_LIB_BIO    bio_init();#endif#if WITH_LIB_FS    fs_init();#endif    // initialize the rest of the platform    dprintf(SPEW, "initializing platform\n");    platform_init();    // initialize the target    dprintf(SPEW, "initializing target\n");    target_init();    dprintf(SPEW, "calling apps_init()\n");    apps_init();    return 0;}

kmain bootstrap2阶段:

  1. arch_init主要是打印一些信息
  2. target_init主要完成的操作有
    • 从共享内存中读写xbl提供的pmic信息
    • 初始化spmi总线,用于cpu和pmic通信
    • 初始化ap与rpm通信通道
    • 初始化按键
    • 判断内核是否签名,当使用的是签名的内核时,需要初始化加密解密引擎
    • 判断是从usf还是emmc启动
    • 获取分区表信息
    • 判断电池电压是否过低,过低则进入预充电
    • 和tz通信
    • 初始化emmc或ufs中的rpmb用户加解密认证分区
    • 运行keymaster
  3. apps_init主要完成一些应用功能的初始化,并调用aboot_init

3.4 aboot_init

aboot_init在aboot.c中,主要完成以下操作:

  1. 根据target_is_emmc_boot()判断是否是从emmc存储设备上启动,然后分别获取对应存储设备的页大小和页掩码
  2. 取得设备的device_info信息,保存到device变量中
  3. 初始化lcd驱动,显示手机开机后的第一副图片
  4. 获取emmc或者flash芯片的产品序列号,最后在启动kernel时通过cmdline中的androidboot.serialno参数传给内核
  5. 检查按键判断是进入recovery还是fastboot
  6. 检查重启模式
  7. 跳转到kernel

4. Kernel初始化介绍

Kernel初始化可以分成三部分:zImage解压缩、kernel的汇编启动阶段、Kernel的C启动阶段

内核启动引导地址由bootp.lds决定,内核启动的执行的第一条的代码在head.S文件中,主要功能是实现压缩内核的解压和跳转到内核vmlinux内核的入口

4.1 head.S

/* * Non-board-specific low-level startup code * * Copyright (C) 2004-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include #include     .section .init.text,"ax"    .global kernel_entrykernel_entry:    /* Start the show */    lddpc   pc, kernel_start_addr    .align  2kernel_start_addr:    .long   start_kernel

kernel的C启动阶段可以理解为真正的启动阶段,从head.S看到,最终调用的是kernel/init/main.c的start_kernel()函数

4.2 start_kernel

asmlinkage __visible void __init start_kernel(void){    char *command_line;    char *after_dashes;    /*     * Need to run as early as possible, to initialize the lockdep hash:     */    lockdep_init();    set_task_stack_end_magic(&init_task);    smp_setup_processor_id();    debug_objects_early_init();    /*     * Set up the the initial canary ASAP:     */    boot_init_stack_canary();    cgroup_init_early();    local_irq_disable();    early_boot_irqs_disabled = true;    /*     * Interrupts are still disabled. Do necessary setups, then     * enable them     */    boot_cpu_init();    page_address_init();    pr_notice("%s", linux_banner);    setup_arch(&command_line);    mm_init_cpumask(&init_mm);    setup_command_line(command_line);    setup_nr_cpu_ids();    setup_per_cpu_areas();    smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */    build_all_zonelists(NULL, NULL);    page_alloc_init();    pr_notice("Kernel command line: %s\n", boot_command_line);    parse_early_param();    after_dashes = parse_args("Booting kernel",                    static_command_line, __start___param,                    __stop___param - __start___param,                    -1, -1, NULL, &unknown_bootoption);    if (!IS_ERR_OR_NULL(after_dashes))        parse_args("Setting init args", after_dashes, NULL, 0, -1, -1, NULL, set_init_arg);    jump_label_init();    /*     * These use large bootmem allocations and must precede kmem_cache_init()     */    setup_log_buf(0);    pidhash_init();    vfs_caches_init_early();    sort_main_extable();    trap_init();    mm_init();    /*     * Set up the scheduler prior starting any interrupts (such as the     * timer interrupt). Full topology setup happens at smp_init()     * time - but meanwhile we still have a functioning scheduler.     */    sched_init();    /*     * Disable preemption - early bootup scheduling is extremely     * fragile until we cpu_idle() for the first time.     */    preempt_disable();    if (WARN(!irqs_disabled(), "Interrupts were enabled *very* early, fixing it\n"))        local_irq_disable();    idr_init_cache();    rcu_init();    /* trace_printk() and trace points may be used after this */    trace_init();    context_tracking_init();    radix_tree_init();    /* init some links before init_ISA_irqs() */    early_irq_init();    init_IRQ();    tick_init();    rcu_init_nohz();    init_timers();    hrtimers_init();    softirq_init();    timekeeping_init();    time_init();    sched_clock_postinit();    perf_event_init();    profile_init();    call_function_init();    WARN(!irqs_disabled(), "Interrupts were enabled early\n");    early_boot_irqs_disabled = false;    local_irq_enable();    kmem_cache_init_late();    /*     * HACK ALERT! This is early. We're enabling the console before     * we've done PCI setups etc, and console_init() must be aware of     * this. But we do want output early, in case something goes wrong.     */    console_init();    if (panic_later)        panic("Too many boot %s vars at `%s'", panic_later, panic_param);    lockdep_info();    /*     * Need to run this when irqs are enabled, because it wants     * to self-test [hard/soft]-irqs on/off lock inversion bugs     * too:     */    locking_selftest();#ifdef CONFIG_BLK_DEV_INITRD    if (initrd_start && !initrd_below_start_ok &&        page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {        pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",        page_to_pfn(virt_to_page((void *)initrd_start)), min_low_pfn);        initrd_start = 0;    }#endif    page_ext_init();    debug_objects_mem_init();    kmemleak_init();    setup_per_cpu_pageset();    numa_policy_init();    if (late_time_init)    late_time_init();    sched_clock_init();    calibrate_delay();    pidmap_init();    anon_vma_init();    acpi_early_init();#ifdef CONFIG_X86    if (efi_enabled(EFI_RUNTIME_SERVICES))        efi_enter_virtual_mode();#endif#ifdef CONFIG_X86_ESPFIX64    /* Should be run before the first non-init thread is created */    init_espfix_bsp();#endif    thread_stack_cache_init();    cred_init();    fork_init();    proc_caches_init();    buffer_init();    key_init();    security_init();    dbg_late_init();    vfs_caches_init();    signals_init();    /* rootfs populating might need page-writeback */    page_writeback_init();    proc_root_init();    nsfs_init();    cpuset_init();    cgroup_init();    taskstats_init_early();    delayacct_init();    check_bugs();    acpi_subsystem_init();    sfi_init_late();    if (efi_enabled(EFI_RUNTIME_SERVICES)) {        efi_late_init();        efi_free_boot_services();    }    ftrace_init();    /* Do the rest non-__init'ed, we're now alive */    rest_init();}

start_kernel()函数中执行了大量的初始化操作:

  • setup_arch():主要做一些板级初始化,cpu初始化,tag参数解析,u-boot传递的cmdline解析,建立mmu工作页表,初始化内存布局,调用mmap_io建立GPIO、IRQ、MEMCTRL、UART,及其他外设的静态映射表,对时钟,定时器,uart进行初始化
  • sched_init():初始化每个处理器的可运行队列,设置系统初始化进程即0号进程
  • softirq_init():内核的软中断机制初始化函数
  • console_init():初始化系统的控制台结构
  • rest_init():调用kernel_thread()创建1号内核线程,调用schedule()函数切换当前进程,在调用该函数之前,Linux系统中只有两个进程,即0号进程init_task和1号进程kernel_init,其中kernel_init进程也是刚刚被创建的。调用该函数后,1号进程kernel_init将会运行

4.3 kernel进程

Linux下有3个特殊的进程,idle(swapper)进程(PID = 0)、init进程(PID = 1)和kthreadd(PID = 2)

  • idle(swapper)进程由系统自动创建,运行在内核态
    idle进程其pid=0,其前身是系统创建的第一个进程,也是唯一一个没有通过fork或者kernel_thread产生的进程。
    完成加载系统后,演变为进程调度、交换,常常被称为交换进程。
  • init进程由idle通过kernel_thread创建,在内核空间完成初始化后,加载init程序,并最终转变为用户空间的init进程
    由0进程创建,完成系统的初始化. 是系统中所有其它用户进程的祖先进程。
    Linux中的所有进程都是有init进程创建并运行的。首先Linux内核启动,然后在用户空间中启动init进程,再启动其他系统进程。
    在系统启动完成后,init将变为守护进程监视系统其他进程。
  • kthreadd进程由idle通过kernel_thread创建,并始终运行在内核空间,负责所有内核线程的调度和管理
    它的任务就是管理和调度其他内核线程kernel_thread,会循环执行一个kthreadd的函数,该函数的作用就是运行kthread_create_list全局链表中维护的kthread,当我们调用kernel_thread创建的内核线程会被加入到此链表中,因此所有的内核线程都是直接或者间接的以kthreadd为父进程。

5. Init初始化介绍

init进程是Linux内核启动后创建的第一个用户空间的进程,init在初始化过程中会启动很多重要的守护进程。

5.1 init启动

代码位于alps/system/core/init/init.cpp

init.cpp的mian函数入口同时也是ueventd和watchdogd守护进程的入口,通过参数进行控制

int main(int argc, char** argv) {    if (!strcmp(basename(argv[0]), "ueventd")) {        return ueventd_main(argc, argv);    }    if (!strcmp(basename(argv[0]), "watchdogd")) {        return watchdogd_main(argc, argv);    }    ...}

默认情况下,一个进程创建出来的文件和文件夹属性都是022,使用umask()函数能设置文件属性的掩码。参数为0意味着进程创建的文件属性是0777。接着创建一些基本的目录包括dev、proc、sys等,同时把分区mount到对应的目录

// Clear the umask.umask(0);// Get the basic filesystem setup we need put together in the initramdisk// on / and then we'll let the rc file figure out the rest.mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");mkdir("/dev/pts", 0755);mkdir("/dev/socket", 0755);mount("devpts", "/dev/pts", "devpts", 0, NULL);#define MAKE_STR(x) __STRING(x)mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC));// Don't expose the raw commandline to unprivileged processes.chmod("/proc/cmdline", 0440);gid_t groups[] = { AID_READPROC };setgroups(arraysize(groups), groups);mount("sysfs", "/sys", "sysfs", 0, NULL);mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL);mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11));mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8));mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9));

init进程会调用property_init创建一个共享区域来存储属性值,初始化完后获取kernel传过来的cmdline去设置一些属性,然后初始化SELinux和安全上下文。接着会通过property_load_boot_defaults去加载default.prop等文件初始化系统属性

property_init();// If arguments are passed both on the command line and in DT,// properties set in DT always have priority over the command-line ones.process_kernel_dt();process_kernel_cmdline();// Propagate the kernel variables to internal variables// used by init as well as the current required properties.export_kernel_boot_props();// Make the time that init started available for bootstat to log.property_set("ro.boottime.init", getenv("INIT_STARTED_AT"));property_set("ro.boottime.init.selinux", getenv("INIT_SELINUX_TOOK"));// Set libavb version for Framework-only OTA match in Treble build.const char* avb_version = getenv("INIT_AVB_VERSION");if (avb_version) property_set("ro.boot.avb_version", avb_version);// Clean up our environment.unsetenv("INIT_SECOND_STAGE");unsetenv("INIT_STARTED_AT");unsetenv("INIT_SELINUX_TOOK");unsetenv("INIT_AVB_VERSION");// Now set up SELinux for second stage.selinux_initialize(false);selinux_restore_context();property_load_boot_defaults();export_oem_lock_status();start_property_service();set_usb_controller();

初始化属性和SELinux后,接着解析init.rc的文件内容,通过init.rc相关语法配置和启动进程以及启动的顺序

const BuiltinFunctionMap function_map;Action::set_function_map(&function_map);ActionManager& am = ActionManager::GetInstance();ServiceManager& sm = ServiceManager::GetInstance();Parser& parser = Parser::GetInstance();parser.AddSectionParser("service", std::make_unique(&sm));parser.AddSectionParser("on", std::make_unique(&am));parser.AddSectionParser("import", std::make_unique(&parser));std::string bootscript = GetProperty("ro.boot.init_rc", "");if (bootscript.empty()) {    parser.ParseConfig("/init.rc");    parser.set_is_system_etc_init_loaded(            parser.ParseConfig("/system/etc/init"));    parser.set_is_vendor_etc_init_loaded(            parser.ParseConfig("/vendor/etc/init"));    parser.set_is_odm_etc_init_loaded(parser.ParseConfig("/odm/etc/init"));} else {    parser.ParseConfig(bootscript);    parser.set_is_system_etc_init_loaded(true);    parser.set_is_vendor_etc_init_loaded(true);    parser.set_is_odm_etc_init_loaded(true);}am.QueueEventTrigger("early-init");// Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");// ... so that we can start queuing up actions that require stuff from /dev.am.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");am.QueueBuiltinAction(set_mmap_rnd_bits_action, "set_mmap_rnd_bits");am.QueueBuiltinAction(set_kptr_restrict_action, "set_kptr_restrict");am.QueueBuiltinAction(keychord_init_action, "keychord_init");am.QueueBuiltinAction(console_init_action, "console_init");// Trigger all the boot actions to get us started.am.QueueEventTrigger("init");// Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random// wasn't ready immediately after wait_for_coldboot_doneam.QueueBuiltinAction(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");// Don't mount filesystems or start core system services in charger mode.std::string bootmode = GetProperty("ro.bootmode", "");if (bootmode == "charger") {    am.QueueEventTrigger("charger");} else {    am.QueueEventTrigger("late-init");}    // Run all property triggers based on current state of the properties.am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");

main函数最后会进入一个死循环,每次循环都会去调用ExecuteOneCommand执行命令列表中的一条命令,如果服务挂了还会调用restart_processes重启服务

while (true) {    // By default, sleep until something happens.    int epoll_timeout_ms = -1;    if (do_shutdown && !shutting_down) {        do_shutdown = false;        if (HandlePowerctlMessage(shutdown_command)) {            shutting_down = true;        }    }    if (!(waiting_for_prop || sm.IsWaitingForExec())) {        am.ExecuteOneCommand();    }    if (!(waiting_for_prop || sm.IsWaitingForExec())) {        if (!shutting_down) restart_processes();        // If there's a process that needs restarting, wake up in time for that.        if (process_needs_restart_at != 0) {            epoll_timeout_ms = (process_needs_restart_at - time(nullptr)) * 1000;            if (epoll_timeout_ms < 0) epoll_timeout_ms = 0;        }        // If there's more work to do, wake up again immediately.        if (am.HasMoreCommands()) epoll_timeout_ms = 0;    }    epoll_event ev;    int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, epoll_timeout_ms));    if (nr == -1) {        PLOG(ERROR) << "epoll_wait failed";    } else if (nr == 1) {        ((void (*)()) ev.data.ptr)();    }}

init进程初始化系统后,会化身为守护进程来处理子进程的死亡信号、修改属性的请求和组合键事件

5.2 init.rc

init.rc文件位于:alps/system/core/rootdir/init.rc

在init.cpp中,启动init.rc各个阶段的顺序是early_init > init > late_init,在late_init中又会去触发其他阶段的启动,所以各个阶段在init中启动的顺序如下:

early_init > init > late_init > early-fs > fs > post-fs > late_fs > post-fs-data > zygote-start > early-boot > boot

on late-init    trigger early-fs    trigger fs    trigger post-fs    trigger late-fs    trigger post-fs-data    trigger zygote-start    trigger load_persist_props_action    trigger firmware_mounts_complete    trigger early-boot    trigger boot

在boot阶段会启动class为hal和core的服务

on boot    ...    class_start hal    class_start core

init.rc中支持的命令实现在builtins.cpp中,具体语法使用可以参考alps/system/core/init/README.md

const BuiltinFunctionMap::Map& BuiltinFunctionMap::map() const {    constexpr std::size_t kMax = std::numeric_limits::max();    // clang-format off    static const Map builtin_functions = {        {"bootchart",               {1,     1,    do_bootchart}},        {"chmod",                   {2,     2,    do_chmod}},        {"chown",                   {2,     3,    do_chown}},        {"class_reset",             {1,     1,    do_class_reset}},        {"class_restart",           {1,     1,    do_class_restart}},        {"class_start",             {1,     1,    do_class_start}},        {"class_stop",              {1,     1,    do_class_stop}},        {"copy",                    {2,     2,    do_copy}},        {"domainname",              {1,     1,    do_domainname}},        {"enable",                  {1,     1,    do_enable}},        {"exec",                    {1,     kMax, do_exec}},        {"exec_start",              {1,     1,    do_exec_start}},        {"export",                  {2,     2,    do_export}},        {"hostname",                {1,     1,    do_hostname}},        {"ifup",                    {1,     1,    do_ifup}},        {"init_user0",              {0,     0,    do_init_user0}},        {"insmod",                  {1,     kMax, do_insmod}},        {"installkey",              {1,     1,    do_installkey}},        {"load_persist_props",      {0,     0,    do_load_persist_props}},        {"load_system_props",       {0,     0,    do_load_system_props}},        {"loglevel",                {1,     1,    do_loglevel}},        {"mkdir",                   {1,     4,    do_mkdir}},        {"mount_all",               {1,     kMax, do_mount_all}},        {"mount",                   {3,     kMax, do_mount}},        {"umount",                  {1,     1,    do_umount}},        {"restart",                 {1,     1,    do_restart}},        {"restorecon",              {1,     kMax, do_restorecon}},        {"restorecon_recursive",    {1,     kMax, do_restorecon_recursive}},        {"rm",                      {1,     1,    do_rm}},        {"rmdir",                   {1,     1,    do_rmdir}},        {"setprop",                 {2,     2,    do_setprop}},        {"setrlimit",               {3,     3,    do_setrlimit}},        {"start",                   {1,     1,    do_start}},        {"stop",                    {1,     1,    do_stop}},        {"swapon_all",              {1,     1,    do_swapon_all}},        {"symlink",                 {2,     2,    do_symlink}},        {"sysclktz",                {1,     1,    do_sysclktz}},        {"trigger",                 {1,     1,    do_trigger}},        {"verity_load_state",       {0,     0,    do_verity_load_state}},        {"verity_update_state",     {0,     0,    do_verity_update_state}},        {"wait",                    {1,     2,    do_wait}},        {"wait_for_prop",           {2,     2,    do_wait_for_prop}},        {"write",                   {2,     2,    do_write}},        {"set_meizu_props",         {0,     0,    do_set_meizu_props}},    };    // clang-format on    return builtin_functions;}

5.3 bootanim启动

bootanim.rc定义了bootanim属于core服务,但是设置了disable说明bootanim不是自启动的服务,需要别的服务进行唤醒。

service bootanim /system/bin/bootanimation    class core animation    user graphics    group graphics audio    disabled    oneshot    writepid /dev/stune/top-app/tasks

5.4 surfaceflinger启动

代码里搜索bootanim,可以看到是surfaceflinger服务将bootanim启动,surfaceflinger属于core服务,自启动服务,在init进程的on boot阶段会启动surfaceflinger,surfaceflinger最后会启动StartPropertySetThread从而启动bootanim

service surfaceflinger /system/bin/surfaceflinger    class core animation    user system    group graphics drmrpc readproc    onrestart restart zygote    writepid /dev/stune/foreground/tasks    socket pdx/system/vr/display/client     stream 0666 system graphics u:object_r:pdx_display_client_endpoint_socket:s0    socket pdx/system/vr/display/manager    stream 0666 system graphics u:object_r:pdx_display_manager_endpoint_socket:s0    socket pdx/system/vr/display/vsync      stream 0666 system graphics u:object_r:pdx_display_vsync_endpoint_socket:s0
bool StartPropertySetThread::threadLoop() {    // Set property service.sf.present_timestamp, consumer need check its readiness    property_set(kTimestampProperty, mTimestampPropertyValue ? "1" : "0");    // Clear BootAnimation exit flag    property_set("service.bootanim.exit", "0");    // Start BootAnimation if not started    property_set("ctl.start", "bootanim");    // Exit immediately    return false;}

surfaceflinger服务的main函数入口在main_surfaceflinger,主要操作有:

  1. 启动Hidl服务,主要是DisplayService
  2. 启动线程池
  3. 初始化SurfaceFlinger
  4. 将SurfaceFlinger和GpuService注册到ServiceManager
  5. 启动SurfaceFlinger线程
int main(int, char**) {    startHidlServices();    signal(SIGPIPE, SIG_IGN);    // When SF is launched in its own process, limit the number of    // binder threads to 4.    ProcessState::self()->setThreadPoolMaxThreadCount(4);    // start the thread pool    sp ps(ProcessState::self());    ps->startThreadPool();    // instantiate surfaceflinger    sp flinger = new SurfaceFlinger();    setpriority(PRIO_PROCESS, 0, PRIORITY_URGENT_DISPLAY);    set_sched_policy(0, SP_FOREGROUND);    // Put most SurfaceFlinger threads in the system-background cpuset    // Keeps us from unnecessarily using big cores    // Do this after the binder thread pool init    if (cpusets_enabled()) set_cpuset_policy(0, SP_SYSTEM);    // initialize before clients can connect    flinger->init();    // publish surface flinger    sp sm(defaultServiceManager());    sm->addService(String16(SurfaceFlinger::getServiceName()), flinger, false);    // publish GpuService    sp gpuservice = new GpuService();    sm->addService(String16(GpuService::SERVICE_NAME), gpuservice, false);    struct sched_param param = {0};    param.sched_priority = 2;    if (sched_setscheduler(0, SCHED_FIFO, ¶m) != 0) {        ALOGE("Couldn't set SCHED_FIFO");    }    // run surface flinger in this thread    flinger->run();    return 0;}

surfaceflinger继承了Thread,执行run方法后,本质上是调用c++中的pthread类,线程入口函数是threadLoop,threadLoop的含义是通过一个循环不断的调用该函数,当threadLoop返回false的时候退出循环

由于bootanim的threadLoop返回false,所以启动函数在开机过程中只会执行一次

接下来的分析请看Android启动流程简析(二)

更多相关文章

  1. Android启动
  2. 如何成为一个偷懒又高效的Android开发人员
  3. Android--LowMemoryKiller知识点补充
  4. Android自定义动画学习,实现左右摇摆动画
  5. 架构
  6. android关机充电的奥妙所在(留着以后用)
  7. Eclipse启动失败Android(安卓)sdk content loader 0%的四种解决
  8. 深入理解 Android(安卓)的 IPC 机制--------Binder
  9. Android休眠唤醒和wakeup_source机制的使用(1)

随机推荐

  1. Android 在屏幕上打印LOG
  2. [转]Android Audio简述
  3. js 判断当前操作系统 ios, android, 电脑
  4. 对话框式activity
  5. 在Android中支持表情
  6. android 竖屏activity跳转横屏activity返
  7. Android ListView在TalkBack下有些项无法
  8. 探讨相对布局的重要特性和属性
  9. Ubuntu 下配置使用Android adb
  10. Android点击其他地方隐藏键盘