Android View绘制原理源码解析

众所周知,Android有四大组件,分别是Activity、服务(Service)、广播接收者(BroadcastReceiver)和内容提供者(ContentProvider),虽然View并不属于其中,但是在Android的体系中View一直扮演了非常重要的作用,因为它是视觉上的呈现,同时也是为了满足用户与应用之间的正常交互,Android系统给我们提供了一套GUI库,里面有很多控件,比如布局控件LinearLayout和RelativeLayout,功能控件TextView和Button等,但是在开发中系统提供的控件往往并不能都满足需求,一来是避免应用界面过于同类化,二来是为了完成应用特定的一些功能操作,这就意味着这时我们需要自己自定义View了。为了更好的自定义View满足需求,我们需要对View的工作原理有一定的了解,下面我们就来分析下View的绘制源码。

View的绘制流程是从ViewRootImpl的performTraversals方法开始的,performTraversals会依次调用performMesure、performLayout和performDraw方法,这三个方法分别完成顶级View的mesure、layout和draw这三大流程,performMesure会调用mesure方法,mesure方法又会调用onMesure方法,在onMesure方法又会循环调用子元素的mesure方法,这样就传到给子View同时完成一次measure过程,同理,performLayout和performDraw也是类似的。总体来说经过measure(测量View的宽和高)、layout(确定View在父容器的位置)和draw(View的绘制)才最终完成View的整个绘制流程,将View显示出来,整体流程可以用下图所示

2019-12-29_第1张图片
1、measure过程

想要更好的理解测量过程,就需要先了解MeasureSpec,MeasureSpec在很大程度上决定了View的测量宽高,View的MeasureSpec创建受到父View的MeasureSpec和自身LayoutParams的影响。MeasureSpec代表着一个32位的int值,其中前两位代表specMode(测量模式),后30位代表specSize(在某个测量模式下的大小),MeasureSpec之所以打包成int值是为了避免过多的对象内存分配,它提供了打包和解包的方法,这种实现思想值得我们在开发中进行借鉴,MeasureSpec的源码如下所示,代码还是比较简单的:

public static class MeasureSpec {    private static final int MODE_SHIFT = 30;    private static final int MODE_MASK  = 0x3 << MODE_SHIFT;    public static final int UNSPECIFIED = 0 << MODE_SHIFT;    public static final int EXACTLY     = 1 << MODE_SHIFT;    public static final int AT_MOST     = 2 << MODE_SHIFT;    public static int makeMeasureSpec(int size, int mode) {        if (sUseBrokenMakeMeasureSpec) {            return size + mode;        } else {            return (size & ~MODE_MASK) | (mode & MODE_MASK);        }    }    public static int makeSafeMeasureSpec(int size, int mode) {        if (sUseZeroUnspecifiedMeasureSpec && mode == UNSPECIFIED) {            return 0;        }        return makeMeasureSpec(size, mode);    }    public static int getMode(int measureSpec) {        //noinspection ResourceType        return (measureSpec & MODE_MASK);    }    public static int getSize(int measureSpec) {        return (measureSpec & ~MODE_MASK);    }}

测量模式specMode有三类:

  • UNSPECIFIED:未指定模式,父容器不对View作任何约束,想要多大就给多大。这种情况一般用在系统内部,表示一种测量的状态。一般情况下,我们不用关注该测量模式。
  • EXACTLY:精准模式,父容器已经检测出View所需要的精准大小,这时候 View 的最终大小就是 SpecSize ,它对应于 LayoutParams 中的 match_parent 和具体的数值这两种情况。
  • AT_MOST:最大模式,父容器指定了一个可用大小即specSize,具体大小要看不同View的具体实现,但确定的是View的大小不能超过这个值,它对应于LayoutParams 中的 wrap_content这种情况。

对于普通View,它的MeasureSpec创建受到父View的MeasureSpec和自身LayoutParams的影响,但是对于顶级View也就是DecorView来说,它的MeasureSpec创建是受到窗口的尺寸和自身LayoutParams影响的,MeasureSpec一旦确定下来,就可以确定View的测量宽高了。我们先来看看DecorView的MeasureSpec是如何创建的,在ViewRootImpl的performTraversals中会调用一个方法measureHierarchy,measureHierarchy方法中有下面这样一段代码,其中desiredWindowWidth和desiredWindowHeight是窗口的尺寸大小。

childWidthMeasureSpec = getRootMeasureSpec(desiredWindowWidth, lp.width);childHeightMeasureSpec = getRootMeasureSpec(desiredWindowHeight, lp.height);performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);

我们来看看getRootMeasureSpec方法的实现,这个方法并不长也很明确,当rootDimension也就是LayoutParams为MATCH_PARENT时,此时为精确模式,大小是窗口的大小;当rootDimension为WRAP_CONTENT时,此时为最大模式,大小不定,但是不能超过窗口的大小;当rootDimension为某个确定值时,此时为精确模式,大小就是这个确定值。

private static int getRootMeasureSpec(int windowSize, int rootDimension) {    int measureSpec;    switch (rootDimension) {    case ViewGroup.LayoutParams.MATCH_PARENT:        // Window can't resize. Force root view to be windowSize.        measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);        break;    case ViewGroup.LayoutParams.WRAP_CONTENT:        // Window can resize. Set max size for root view.        measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST);        break;    default:        // Window wants to be an exact size. Force root view to be that size.        measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY);        break;    }    return measureSpec;}

接下来再来看看performMeasure方法的实现,代码比较简短,可以看到这边调用了View的measure方法,这个mView就是DecorView。

private void performMeasure(int childWidthMeasureSpec, int childHeightMeasureSpec) {    if (mView == null) {        return;    }    Trace.traceBegin(Trace.TRACE_TAG_VIEW, "measure");    try {        mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);    } finally {        Trace.traceEnd(Trace.TRACE_TAG_VIEW);    }}

measure方法是一个final类型的方法,说明View的继承类ViewGroup等子类不能重写此方法,在View的Measure方法中会去调用onMeasure方法,对于View的测量我们主要看的就是onMeasure方法,它是完成View的测量过程的关键方法。

public final void measure(int widthMeasureSpec, int heightMeasureSpec) {        ...    // first clears the measured dimension flag    mPrivateFlags &= ~PFLAG_MEASURED_DIMENSION_SET;    resolveRtlPropertiesIfNeeded();    int cacheIndex = forceLayout ? -1 : mMeasureCache.indexOfKey(key);    if (cacheIndex < 0 || sIgnoreMeasureCache) {            // measure ourselves, this should set the measured dimension flag back            onMeasure(widthMeasureSpec, heightMeasureSpec);            mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;    }     ...}

先来看看View的onMeasure方法的实现,里面只是调用了setMeasuredDimension,这个方法是用来设置保存测量宽高值的,getDefaultSize这个方法也比较简洁,可以看到,当specMode为UNSPECIFIED,返回的测量大小是第一个参数size,也就是getSuggestedMinimumWidth、getSuggestedMinimumHeight方法的返回值,当MeasureSpec的specMode为AT_MOST或者EXACTLY时,返回的就是测量大小specSize,可以发现specMode是AT_MOST时,返回的测量宽高和EXACTLY是一样的,这意味着我们在自定义View设置LayoutParams为wrap_content(对应AT_MOST)时需要自己去设定这种模式下的宽高,否则,它使用的是父容器剩余的可以使用的宽高。

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {    setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),            getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));}
public static int getDefaultSize(int size, int measureSpec) {    int result = size;    int specMode = MeasureSpec.getMode(measureSpec);    int specSize = MeasureSpec.getSize(measureSpec);    switch (specMode) {    case MeasureSpec.UNSPECIFIED:        result = size;        break;    case MeasureSpec.AT_MOST:    case MeasureSpec.EXACTLY:        result = specSize;        break;    }    return result;}

getSuggestedMinimumWidth方法中会判断View是否设置有背景,如果没有,则返回mMinWidth,这个值是我们在布局中文件中设置的android:minWidth的值,如果设置有背景,则返回的是max(mMinWidth, mBackground.getMinimumWidth()),我们看下Drawable中getMinimumWidth的实现,这个方法返回的是背景建议的最小宽度,也就是原始宽度,当然前提是这个Drawable有原始宽度,比如BitmapDrawable,否则就返回0,比如Drawable是ShapeDrawable。同理,getSuggestedMinimumHeight也是类似的。

protected int getSuggestedMinimumWidth() {    return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());}
public int getMinimumWidth() {    final int intrinsicWidth = getIntrinsicWidth();    return intrinsicWidth > 0 ? intrinsicWidth : 0;}

再来看看ViewGroup的measure过程,ViewGroup不但需要完成自身的测量,还需要去遍历执行调用子View的measure方法,继续对子View进行测量,完成一次测量过程。ViewGroup并没有去实现onMeasure方法,因为对于很多ViewGroup的子类比如RelativeLayout、FrameLayout和LinearLayout它们的布局是不同的,有各自的特性,它们的onMeasure方法各有自身的实现,所以ViewGroup没有onMeasure方法的统一实现。

先通过FrameLayout的onMeasure方法实现来分析下它的测量过程,因为这个方法比较长,我们分段进行说明。从源码中首先判断FrameLayout的宽或者高为精确模式EXACTLY,那么measureMatchParentChildren为true,这个变量下面会用到,maxWidth和maxHeight是最终用来计算FrameLayout测量模式为最大模式AT_MOST或者未指定模式UNSPECIFIED时用来确定其测量宽高,接下里可以看得到,然后通过循环遍历子View,这里调用了measureChildWithMargins方法,这个方法是用来确定子View的MeasureSpec并调用子View的measure方法,把测量过程往下传递到子View的,同时,还可以看到最终循环下来maxWidtht的值是子View测量宽度加上左右两边Margin的最大值,maxHeight的值是子View测量高度加上上下两边Margin的最大值。

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {    int count = getChildCount();    final boolean measureMatchParentChildren =            MeasureSpec.getMode(widthMeasureSpec) != MeasureSpec.EXACTLY ||                    MeasureSpec.getMode(heightMeasureSpec) != MeasureSpec.EXACTLY;    mMatchParentChildren.clear();    int maxHeight = 0;    int maxWidth = 0;    int childState = 0;    for (int i = 0; i < count; i++) {        final View child = getChildAt(i);        if (mMeasureAllChildren || child.getVisibility() != GONE) {            measureChildWithMargins(child, widthMeasureSpec, 0, heightMeasureSpec, 0);            final LayoutParams lp = (LayoutParams) child.getLayoutParams();            maxWidth = Math.max(maxWidth,                    child.getMeasuredWidth() + lp.leftMargin + lp.rightMargin);            maxHeight = Math.max(maxHeight,                    child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin);            childState = combineMeasuredStates(childState, child.getMeasuredState());            if (measureMatchParentChildren) {                if (lp.width == LayoutParams.MATCH_PARENT ||                        lp.height == LayoutParams.MATCH_PARENT) {                    mMatchParentChildren.add(child);                }            }        }    }      ...}

当对子View循环结束后,FrameLayout就会测量自己的大小,源码如下,首先是将maxWidth和maxHeight加上FrameLayout中的padding值,然后通过和背景和前景(如果有的话)的原始宽高进行对比获取最大值,setMeasuredDimension就是设置FrameLayout的测量宽高。

// Account for padding toomaxWidth += getPaddingLeftWithForeground() + getPaddingRightWithForeground();maxHeight += getPaddingTopWithForeground() + getPaddingBottomWithForeground();// Check against our minimum height and widthmaxHeight = Math.max(maxHeight, getSuggestedMinimumHeight());maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());// Check against our foreground's minimum height and widthfinal Drawable drawable = getForeground();if (drawable != null) {    maxHeight = Math.max(maxHeight, drawable.getMinimumHeight());    maxWidth = Math.max(maxWidth, drawable.getMinimumWidth());}setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),        resolveSizeAndState(maxHeight, heightMeasureSpec,                childState << MEASURED_HEIGHT_STATE_SHIFT));

FrameLayout的onMeasure方法还有一段代码,会对满足一些条件的子View重新测量,结合上面的代码,这些条件就是当FragLayout的宽或高的测量模式为EXACTLY,并且子View的布局中lp.width或者lp.height为MATCH_PARENT时,就会在最后对这些子View重新测量。

count = mMatchParentChildren.size();if (count > 1) {    for (int i = 0; i < count; i++) {        final View child = mMatchParentChildren.get(i);        final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();        final int childWidthMeasureSpec;        if (lp.width == LayoutParams.MATCH_PARENT) {            final int width = Math.max(0, getMeasuredWidth()                    - getPaddingLeftWithForeground() - getPaddingRightWithForeground()                    - lp.leftMargin - lp.rightMargin);            childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(                    width, MeasureSpec.EXACTLY);        } else {            childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,                    getPaddingLeftWithForeground() + getPaddingRightWithForeground() +                    lp.leftMargin + lp.rightMargin,                    lp.width);        }        final int childHeightMeasureSpec;        if (lp.height == LayoutParams.MATCH_PARENT) {            final int height = Math.max(0, getMeasuredHeight()                    - getPaddingTopWithForeground() - getPaddingBottomWithForeground()                    - lp.topMargin - lp.bottomMargin);            childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(                    height, MeasureSpec.EXACTLY);        } else {            childHeightMeasureSpec = getChildMeasureSpec(heightMeasureSpec,                    getPaddingTopWithForeground() + getPaddingBottomWithForeground() +                    lp.topMargin + lp.bottomMargin,                    lp.height);        }        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);    }}

回过头来看看resolveSizeAndState方法是如何得到FrameLayout的测量宽高的,以得到测量宽度为例,如果它的测量模式是EXACTLY,也就是布局是match_parent或者具体的数值是,宽度为specSize,如果是AT_MOST,那么它的宽度是size,也就是maxWidth,但是不能超过父容器的剩余空间,如果是UNSPECIFIED,那么测量宽度就是maxWidth,具体可以看下源码:

public static int resolveSizeAndState(int size, int measureSpec, int childMeasuredState) {    final int specMode = MeasureSpec.getMode(measureSpec);    final int specSize = MeasureSpec.getSize(measureSpec);    final int result;    switch (specMode) {        case MeasureSpec.AT_MOST:            if (specSize < size) {                result = specSize | MEASURED_STATE_TOO_SMALL;            } else {                result = size;            }            break;        case MeasureSpec.EXACTLY:            result = specSize;            break;        case MeasureSpec.UNSPECIFIED:        default:            result = size;    }    return result | (childMeasuredState & MEASURED_STATE_MASK);}

上面提到measureChildWithMargins方法是用来测量子View的宽高的,将测量过程传递到子View,这个方法是在ViewGroup中的,ViewGroup还提供了一个measureChildren方法,不过这个方法是在AbsoluteLayout的onMeasure方法有调用,来看看measureChildWithMargins这个方法的实现,这个方法首先会调用getChildMeasureSpec来获取子元素的MeasureSpec,从传递的参数中很显然可以看出,View的MeasureSpec的创建与父View的MeasureSpec和View布局自身的LayoutParams有关,另外就是与子View的margin和父View的padding有关。

protected void measureChildWithMargins(View child,        int parentWidthMeasureSpec, int widthUsed,        int parentHeightMeasureSpec, int heightUsed) {    final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();    final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,            mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin                    + widthUsed, lp.width);    final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,            mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin                    + heightUsed, lp.height);    child.measure(childWidthMeasureSpec, childHeightMeasureSpec);}

我们进到getChildMeasureSpec方法来看看View是如何得到它的MeasureSpec的,这个方法不难理解,首先获取父View的specMode和specSize,对子View来说可用的父View的空间大小size,然后根据各种情况进行判断,与获取测量宽度的MeasureSpec为例,比如当父View的specMode为EXACTLY时,如果子View的lp.width也就是childDimension为具体值是,那么resultMode就是这个具体值,resultMode为精准模式EXACTLY;如果子View的childDimension为MATCH_PARENT时,子View的resultSize是可用父View的空间大小size,resultMode也是精准模式EXACTLY;如果子View的childDimension为WRAP_CONTENT时,子View的resultSize是可用父View的空间大小size,resultMode是最大模式AT_MOST。其它情况大家可以自行结合自己在开发中在layout的布局效果自行分析即可,最后就是将resultSize和resultMode打包成MeasureSpec。

public static int getChildMeasureSpec(int spec, int padding, int childDimension) {    int specMode = MeasureSpec.getMode(spec);    int specSize = MeasureSpec.getSize(spec);    int size = Math.max(0, specSize - padding);    int resultSize = 0;    int resultMode = 0;    switch (specMode) {    // Parent has imposed an exact size on us    case MeasureSpec.EXACTLY:        if (childDimension >= 0) {            resultSize = childDimension;            resultMode = MeasureSpec.EXACTLY;        } else if (childDimension == LayoutParams.MATCH_PARENT) {            // Child wants to be our size. So be it.            resultSize = size;            resultMode = MeasureSpec.EXACTLY;        } else if (childDimension == LayoutParams.WRAP_CONTENT) {            // Child wants to determine its own size. It can't be            // bigger than us.            resultSize = size;            resultMode = MeasureSpec.AT_MOST;        }        break;    // Parent has imposed a maximum size on us    case MeasureSpec.AT_MOST:        if (childDimension >= 0) {            // Child wants a specific size... so be it            resultSize = childDimension;            resultMode = MeasureSpec.EXACTLY;        } else if (childDimension == LayoutParams.MATCH_PARENT) {            // Child wants to be our size, but our size is not fixed.            // Constrain child to not be bigger than us.            resultSize = size;            resultMode = MeasureSpec.AT_MOST;        } else if (childDimension == LayoutParams.WRAP_CONTENT) {            // Child wants to determine its own size. It can't be            // bigger than us.            resultSize = size;            resultMode = MeasureSpec.AT_MOST;        }        break;    // Parent asked to see how big we want to be    case MeasureSpec.UNSPECIFIED:        if (childDimension >= 0) {            // Child wants a specific size... let him have it            resultSize = childDimension;            resultMode = MeasureSpec.EXACTLY;        } else if (childDimension == LayoutParams.MATCH_PARENT) {            // Child wants to be our size... find out how big it should            // be            resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;            resultMode = MeasureSpec.UNSPECIFIED;        } else if (childDimension == LayoutParams.WRAP_CONTENT) {            // Child wants to determine its own size.... find out how            // big it should be            resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;            resultMode = MeasureSpec.UNSPECIFIED;        }        break;    }    //noinspection ResourceType    return MeasureSpec.makeMeasureSpec(resultSize, resultMode);}
2、layout过程

layout是用来确定View的位置的,它会在layout方法中确定View的位置,对于ViewGroup来说,还会调用onLayout方法来继续遍历调用子View的layout方法确定子View的位置,把布局往下传递,layout过程是从performLayout方法开始的,host就是根View也就是DecorView。

private void performLayout(WindowManager.LayoutParams lp, int desiredWindowWidth,        int desiredWindowHeight) {    mLayoutRequested = false;    mScrollMayChange = true;    mInLayout = true;    final View host = mView;    if (host == null) {        return;    }        ...    try {        host.layout(0, 0, host.getMeasuredWidth(), host.getMeasuredHeight());        ...    } finally {        Trace.traceEnd(Trace.TRACE_TAG_VIEW);    }    mInLayout = false;}

先来看看View的layout方法,首先会通过setFrame方法来给View的四个顶点mLeft、mTop、mRight和mBottom赋值,这四个顶点一旦确定,那么View在父容器的位置也就确定了,接着会调用onLayout方法,这个方法是用来确定子View位置的,对于View来说是空实现,因为View它没有子View。

public void layout(int l, int t, int r, int b) {    if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {        onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);        mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;    }    int oldL = mLeft;    int oldT = mTop;    int oldB = mBottom;    int oldR = mRight;    boolean changed = isLayoutModeOptical(mParent) ?            setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);    if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {        onLayout(changed, l, t, r, b);        if (shouldDrawRoundScrollbar()) {            if(mRoundScrollbarRenderer == null) {                mRoundScrollbarRenderer = new RoundScrollbarRenderer(this);            }        } else {            mRoundScrollbarRenderer = null;        }        mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;        ListenerInfo li = mListenerInfo;        if (li != null && li.mOnLayoutChangeListeners != null) {            ArrayList listenersCopy =                    (ArrayList)li.mOnLayoutChangeListeners.clone();            int numListeners = listenersCopy.size();            for (int i = 0; i < numListeners; ++i) {                listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);            }        }    }    final boolean wasLayoutValid = isLayoutValid();    mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;    mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;        ...}
protected boolean setFrame(int left, int top, int right, int bottom) {    boolean changed = false;    if (mLeft != left || mRight != right || mTop != top || mBottom != bottom) {        changed = true;        // Remember our drawn bit        int drawn = mPrivateFlags & PFLAG_DRAWN;        int oldWidth = mRight - mLeft;        int oldHeight = mBottom - mTop;        int newWidth = right - left;        int newHeight = bottom - top;        boolean sizeChanged = (newWidth != oldWidth) || (newHeight != oldHeight);        // Invalidate our old position        invalidate(sizeChanged);        mLeft = left;        mTop = top;        mRight = right;        mBottom = bottom;        ...    }    return changed;}

跟onMeasure方法一样,每种ViewGroup的onLayout方法实现方式也是不同的,我们这次以LinerLayout的onLaout方法为例,LinerLayout有两种布局方式,我们来看下layoutVertical方法的实现。

protected void onLayout(boolean changed, int l, int t, int r, int b) {    if (mOrientation == VERTICAL) {        layoutVertical(l, t, r, b);    } else {        layoutHorizontal(l, t, r, b);    }}

layoutVertical这个方法会遍历所有的子View,然后调用setChildFrame,这个方法是用来确定子元素的位置的,这个方法的内部其实就是调用了子元素的layout方法,layout方法从上面就知道,它会确定view的4个顶点赋值,从而确定View在父View中的位置,然后再调用onLayout方法,这样就把布局过程往下传递,从而完成整个View树的遍历。同时可以看到childTop会逐渐增大,这意味着子View会不断放置到靠下的位置,这也符合LinerLayout布局设置Vertical方向时的布局特性。

void layoutVertical(int left, int top, int right, int bottom) {    ...    for (int i = 0; i < count; i++) {        final View child = getVirtualChildAt(i);        if (child == null) {            childTop += measureNullChild(i);        } else if (child.getVisibility() != GONE) {            final int childWidth = child.getMeasuredWidth();            final int childHeight = child.getMeasuredHeight();            final LinearLayout.LayoutParams lp =                    (LinearLayout.LayoutParams) child.getLayoutParams();            ...            if (hasDividerBeforeChildAt(i)) {                childTop += mDividerHeight;            }            childTop += lp.topMargin;            setChildFrame(child, childLeft, childTop + getLocationOffset(child),                    childWidth, childHeight);            childTop += childHeight + lp.bottomMargin + getNextLocationOffset(child);            i += getChildrenSkipCount(child, i);        }    }}
private void setChildFrame(View child, int left, int top, int width, int height) {    child.layout(left, top, left + width, top + height);}
3、draw过程

经过measure和layout过程之后就需要将View绘制到屏幕上显示出来,draw过程是从performDraw方法开始的,最终会执行到判断是否开启了硬件加速,如果没有开启则会执行drawSoftware方法,这个方法会直接去调用mView.draw(canvas),如果开启了则会去执行mAttachInfo.mThreadedRenderer.draw方法,这个方法的内部最终还是会执行到DecorView 的 draw 方法上,它的主要流程如下:

private void performDraw() {    ...    try {        boolean canUseAsync = draw(fullRedrawNeeded);        if (usingAsyncReport && !canUseAsync) {            mAttachInfo.mThreadedRenderer.setFrameCompleteCallback(null);            usingAsyncReport = false;        }    } finally {        mIsDrawing = false;        Trace.traceEnd(Trace.TRACE_TAG_VIEW);    }    ...}
private boolean draw(boolean fullRedrawNeeded) {    ...    if (!dirty.isEmpty() || mIsAnimating || accessibilityFocusDirty) {        if (mAttachInfo.mThreadedRenderer != null && mAttachInfo.mThreadedRenderer.isEnabled()) {            ...            mAttachInfo.mThreadedRenderer.draw(mView, mAttachInfo, this);        } else {            ...            if (!drawSoftware(surface, mAttachInfo, xOffset, yOffset,                    scalingRequired, dirty, surfaceInsets)) {                return false;            }        }    }        ...}

对于普通情况下View的绘制步骤主要遵循如下几步:绘制背景(drawBackground(canvas))、绘制自己(onDraw(canvas))、绘制children(dispatchDraw(canvas))、绘制装饰decorations(onDrawForeground(canvas)),如果需要对默认焦点突出显示还会调用drawDefaultFocusHighlight(canvas),其中,向下绘制children的分发是调用dispatchDraw方法,而测量和布局的向下分发是调用onMeasure和onLayout方法的,这是一个区别,源码中的也有详细绘制流程注释,draw的主要源码如下:

public void draw(Canvas canvas) {    final int privateFlags = mPrivateFlags;    mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;    /*     * Draw traversal performs several drawing steps which must be executed     * in the appropriate order:     *     *      1. Draw the background     *      2. If necessary, save the canvas' layers to prepare for fading     *      3. Draw view's content     *      4. Draw children     *      5. If necessary, draw the fading edges and restore layers     *      6. Draw decorations (scrollbars for instance)     */    // Step 1, draw the background, if needed    int saveCount;    drawBackground(canvas);    // skip step 2 & 5 if possible (common case)    final int viewFlags = mViewFlags;    boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;    boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;    if (!verticalEdges && !horizontalEdges) {        // Step 3, draw the content        onDraw(canvas);        // Step 4, draw the children        dispatchDraw(canvas);        drawAutofilledHighlight(canvas);        // Overlay is part of the content and draws beneath Foreground        if (mOverlay != null && !mOverlay.isEmpty()) {            mOverlay.getOverlayView().dispatchDraw(canvas);        }        // Step 6, draw decorations (foreground, scrollbars)        onDrawForeground(canvas);        // Step 7, draw the default focus highlight        drawDefaultFocusHighlight(canvas);        if (debugDraw()) {            debugDrawFocus(canvas);        }        // we're done...        return;    }    ...}

View绘制原理源码就分析到这了,如果有不对的地方欢迎指出和交流。

参考:

书籍:《Android开发艺术探索》

更多相关文章

  1. Android 修改Camera默认preview size预览大小为4:3
  2. Android 子线程更新UI的几种方法
  3. android加载字体内存泄漏的处理方法
  4. Android Studio运行main方法报错 SourceSet with name ‘main‘
  5. 谷歌开发工具android studio启动不了的解决方法
  6. android adb push 与 adb install的比较(两种安装APK的方法)
  7. 解决style attribute ‘@android:attr/windowEnterAnimation’ n
  8. Android 应用程序退出的四种方法

随机推荐

  1. 详解XMLHTTP对象封装技术的示例代码
  2. 关于XML的HTTP请求详解
  3. 详解使用XML Schema定义元素的基本知识(图
  4. 详细介绍XML的基本代码
  5. 详细介绍XML行为(behavior)-新的DHTML?
  6. XML Schema的一个简单的例子
  7. 使用XML与Asp实现交互的一个示例代码分享
  8. XML开发基础-XML树结构
  9. XML-Spy使XML编辑过程的详细介绍
  10. XML开发基础-XML验证代码分享