Android消息机制的概述

Handler 是Android消息机制的上层接口,通过它可以轻松的将一个任务切换到Handler所在的线程去执行。

Q&A

  • 为什么Android需要通过Handler去切换任务执行的线程呢?
    因为Android规定只能在主线程中更新UI。如果在子线程中访问就会抛出异常,看源码中的操作:
void checkThread() {    if (mThread != Thread.currentThread()) {        throw new CalledFromWrongThreadException(                "Only the original thread that created a view hierarchy can touch its views.");    }}

但是Android系统建议不能在主线程中进行耗时操作,所以产生Handler的原因就是为了解决在子线程中无法访问UI的矛盾。

  • 系统为什么不允许在子线程中访问UI呢?
    因为Android的UI是线程不安全的,多线程并发访问会导致UI控件处于不可预期的状态。
  • 为什么不加锁同步访问呢?
    影响效率。

Handle的工作原理

在创建的时候会采用当前线程的Looper来构建内部的消息循环系统,如果当前线程没有Looper就会报错。Handler创建完毕之后
其内部的Looper和MessageQueue就可以和Handler一起工作了。

主要的类

  • Handler(主要负责消息的发送与接收)
  • MessageQueue (单链表结构,负责消息的插入与读取)
  • Looper(轮询消息队列)
    • ThreadLocal (线程内部的数据存储类)

Android消息机制的分析

ThreadLocal的工作原理

是一个线程内部的数据存储类,通过它可以在指定的线程存储数据,存储之后,也只能在指定线程中获取到存储的数据,其他线程是无法获取到的。

//ThreadLocal.javapublic void set(T value) {    Thread t = Thread.currentThread();    ThreadLocalMap map = getMap(t);    if (map != null)        map.set(this, value);    else        createMap(t, value);}public T get() {    Thread t = Thread.currentThread();    ThreadLocalMap map = getMap(t);    if (map != null) {        ThreadLocalMap.Entry e = map.getEntry(this);        if (e != null)            return (T)e.value;    }    return setInitialValue();}

MessageQueue的工作原理

主要包含两个操作插入enqueueMessage读取next。读取本身会伴随着删除操作。消息队列内部维护的是一个单链表结构,因为单链表进行插入与删除的操作效率较高。下面是两个方法的实现。

// 其实就是单链表的插入操作boolean enqueueMessage(Message msg, long when) {    if (msg.target == null) {        throw new IllegalArgumentException("Message must have a target.");    }    if (msg.isInUse()) {        throw new IllegalStateException(msg + " This message is already in use.");    }    synchronized (this) {        if (mQuitting) {            IllegalStateException e = new IllegalStateException(                    msg.target + " sending message to a Handler on a dead thread");            Log.w(TAG, e.getMessage(), e);            msg.recycle();            return false;        }        msg.markInUse();        msg.when = when;        Message p = mMessages;        boolean needWake;        if (p == null || when == 0 || when < p.when) {            // New head, wake up the event queue if blocked.            msg.next = p;            mMessages = msg;            needWake = mBlocked;        } else {            // Inserted within the middle of the queue.  Usually we don't have to wake            // up the event queue unless there is a barrier at the head of the queue            // and the message is the earliest asynchronous message in the queue.            needWake = mBlocked && p.target == null && msg.isAsynchronous();            Message prev;            for (;;) {                prev = p;                p = p.next;                if (p == null || when < p.when) {                    break;                }                if (needWake && p.isAsynchronous()) {                    needWake = false;                }            }            msg.next = p; // invariant: p == prev.next            prev.next = msg;        }        // We can assume mPtr != 0 because mQuitting is false.        if (needWake) {            nativeWake(mPtr);        }    }    return true;}//是一个无限循环的方法,如果消息队列中没有消息,next方法就会阻塞在这里,有新消息到来,会返回这条消息并将其从单链表中移除Message next() {    int pendingIdleHandlerCount = -1; // -1 only during first iteration    int nextPollTimeoutMillis = 0;    for (;;) {        if (nextPollTimeoutMillis != 0) {            Binder.flushPendingCommands();        }        nativePollOnce(ptr, nextPollTimeoutMillis);        synchronized (this) {            // Try to retrieve the next message.  Return if found.            final long now = SystemClock.uptimeMillis();            Message prevMsg = null;            Message msg = mMessages;            if (msg != null && msg.target == null) {                // Stalled by a barrier.  Find the next asynchronous message in the queue.                do {                    prevMsg = msg;                    msg = msg.next;                } while (msg != null && !msg.isAsynchronous());            }            if (msg != null) {                if (now < msg.when) {                    // Next message is not ready.  Set a timeout to wake up when it is ready.                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);                } else {                    // Got a message.                    mBlocked = false;                    if (prevMsg != null) {                        prevMsg.next = msg.next;                    } else {                        mMessages = msg.next;                    }                    msg.next = null;                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);                    msg.markInUse();                    return msg;                }            } else {                // No more messages.                nextPollTimeoutMillis = -1;            }            // Process the quit message now that all pending messages have been handled.            if (mQuitting) {                dispose();                return null;            }            // If first time idle, then get the number of idlers to run.            // Idle handles only run if the queue is empty or if the first message            // in the queue (possibly a barrier) is due to be handled in the future.            if (pendingIdleHandlerCount < 0                    && (mMessages == null || now < mMessages.when)) {                pendingIdleHandlerCount = mIdleHandlers.size();            }            if (pendingIdleHandlerCount <= 0) {                // No idle handlers to run.  Loop and wait some more.                mBlocked = true;                continue;            }            if (mPendingIdleHandlers == null) {                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];            }            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);        }        // Run the idle handlers.        // We only ever reach this code block during the first iteration.        for (int i = 0; i < pendingIdleHandlerCount; i++) {            final IdleHandler idler = mPendingIdleHandlers[i];            mPendingIdleHandlers[i] = null; // release the reference to the handler            boolean keep = false;            try {                keep = idler.queueIdle();            } catch (Throwable t) {                Log.wtf(TAG, "IdleHandler threw exception", t);            }            if (!keep) {                synchronized (this) {                    mIdleHandlers.remove(idler);                }            }        }        // Reset the idle handler count to 0 so we do not run them again.        pendingIdleHandlerCount = 0;        // While calling an idle handler, a new message could have been delivered        // so go back and look again for a pending message without waiting.        nextPollTimeoutMillis = 0;    }}

Looper的工作原理

Looper会不停的从MessageQueue中查看是否有新消息,如果有新消息会立刻处理,否则就一直阻塞在哪里。Handler的工作需要Looper,如果没有Looper的线程就会报错。

//在构造方法中创建一个消息队列,将当前线程保存起来private Looper(boolean quitAllowed) {    mQueue = new MessageQueue(quitAllowed);    mThread = Thread.currentThread();}
//通过Looper.prepare()为当前线程创建一个Looper,然后调用Looper.loop()开启消息循环private static void prepare(boolean quitAllowed) {    if (sThreadLocal.get() != null) {        throw new RuntimeException("Only one Looper may be created per thread");    }    sThreadLocal.set(new Looper(quitAllowed));}/** * Run the message queue in this thread. Be sure to call * {@link #quit()} to end the loop. */public static void loop() {    final Looper me = myLooper();    if (me == null) {        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");    }    final MessageQueue queue = me.mQueue;    // Make sure the identity of this thread is that of the local process,    // and keep track of what that identity token actually is.    Binder.clearCallingIdentity();    final long ident = Binder.clearCallingIdentity();    for (;;) {        Message msg = queue.next(); // might block        if (msg == null) {            // No message indicates that the message queue is quitting.            return;        }        // This must be in a local variable, in case a UI event sets the logger        final Printer logging = me.mLogging;        if (logging != null) {            logging.println(">>>>> Dispatching to " + msg.target + " " +                    msg.callback + ": " + msg.what);        }        final long traceTag = me.mTraceTag;        if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));        }        try {            msg.target.dispatchMessage(msg);        } finally {            if (traceTag != 0) {                Trace.traceEnd(traceTag);            }        }        if (logging != null) {            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);        }        // Make sure that during the course of dispatching the        // identity of the thread wasn't corrupted.        final long newIdent = Binder.clearCallingIdentity();        if (ident != newIdent) {            Log.wtf(TAG, "Thread identity changed from 0x"                    + Long.toHexString(ident) + " to 0x"                    + Long.toHexString(newIdent) + " while dispatching to "                    + msg.target.getClass().getName() + " "                    + msg.callback + " what=" + msg.what);        }        msg.recycleUnchecked();    }}

loop方法是一个死循环,唯一跳出循环的方法就是 MessageQueue.next() 返回null

 Message msg = queue.next(); // might block        if (msg == null) {            // No message indicates that the message queue is quitting.            return;        }

Looper处理消息

msg.target.dispatchMessage(msg);

msg.target值得就是发送这条消息的Handler对象,最终又交给自己的dispatchMessage方法处理。注意这里。该方法是在创建Handler时所使用的Looper中执行的,这样就成功的将代码逻辑切换到了指定的线程中去执行了。

Handler的工作原理

Handler 的主要工作包括消息的发送和接收过程。

发送消息 post 与 send 的一系列方法,发送消息的过程就是向消息队列中插入一条数据。最终都会调用这个方法

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {    MessageQueue queue = mQueue;    if (queue == null) {        RuntimeException e = new RuntimeException(                this + " sendMessageAtTime() called with no mQueue");        Log.w("Looper", e.getMessage(), e);        return false;    }    return enqueueMessage(queue, msg, uptimeMillis);}private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {    msg.target = this;    if (mAsynchronous) {        msg.setAsynchronous(true);    }    return queue.enqueueMessage(msg, uptimeMillis);}

插入数据之后MessageQueuenext方法就会将这条数据返回给Looper开始处理,最终Looperloop方法中交给Handler来分发与处理,即调用Handler的dispatchMessage方法。

/** * Handle system messages here. */public void dispatchMessage(Message msg) {    if (msg.callback != null) {        handleCallback(msg);    } else {        if (mCallback != null) {            if (mCallback.handleMessage(msg)) {                return;            }        }        handleMessage(msg);    }}

主线程的消息循环

Android的主线程就是ActivityThread,入口方法是main。通过Looper.prepareMainLooper()来创建主线程的LooperMessageQueue,然后调用Looper.loop()开启主线程的消息循环。

public static void main(String[] args) {    Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");    SamplingProfilerIntegration.start();    // CloseGuard defaults to true and can be quite spammy.  We    // disable it here, but selectively enable it later (via    // StrictMode) on debug builds, but using DropBox, not logs.    CloseGuard.setEnabled(false);    Environment.initForCurrentUser();    // Set the reporter for event logging in libcore    EventLogger.setReporter(new EventLoggingReporter());    // Make sure TrustedCertificateStore looks in the right place for CA certificates    final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());    TrustedCertificateStore.setDefaultUserDirectory(configDir);    Process.setArgV0("");    Looper.prepareMainLooper();    ActivityThread thread = new ActivityThread();    thread.attach(false);    if (sMainThreadHandler == null) {        sMainThreadHandler = thread.getHandler();    }    if (false) {        Looper.myLooper().setMessageLogging(new                LogPrinter(Log.DEBUG, "ActivityThread"));    }    // End of event ActivityThreadMain.    Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);    Looper.loop();    throw new RuntimeException("Main thread loop unexpectedly exited");}

ActivityThread内部有一个Handler用来和消息队列进行交互,内部定义了一组消息类型,包含四大组件的启动和停止过程。

private class H extends Handler {    public static final int LAUNCH_ACTIVITY         = 100;    public static final int PAUSE_ACTIVITY          = 101;    public static final int PAUSE_ACTIVITY_FINISHING= 102;    public static final int STOP_ACTIVITY_SHOW      = 103;    public static final int STOP_ACTIVITY_HIDE      = 104;    public static final int SHOW_WINDOW             = 105;    public static final int HIDE_WINDOW             = 106;    public static final int RESUME_ACTIVITY         = 107;    public static final int SEND_RESULT             = 108;    public static final int DESTROY_ACTIVITY        = 109;    public static final int BIND_APPLICATION        = 110;    public static final int EXIT_APPLICATION        = 111;    public static final int NEW_INTENT              = 112;    public static final int RECEIVER                = 113;    public static final int CREATE_SERVICE          = 114;    public static final int SERVICE_ARGS            = 115;    public static final int STOP_SERVICE            = 116;}

更多相关文章

  1. android spinner默认样式不支持换行和修改字体样式 的解决方法
  2. [Android][Android Studio] *.jar 与 *.aar 的生成与*.aar导入项
  3. Android应用程序消息处理机制(Looper、Handler)分析(1)
  4. 从零开始--系统深入学习android(实践-让我们开始写代码-Android框
  5. Android线程的学习
  6. Android的线程和线程池

随机推荐

  1. 在非NDK编译条件下使用Android(安卓)Log
  2. Android前台画面和后台service之间通信的
  3. 编写高效的Android代码(提高运行速度,节
  4. Android(安卓)6.0+ TelephonyManager 使
  5. htc android操作
  6. Android(安卓)RxJava 实际应用讲解:联合判
  7. Android(安卓)ID详解
  8. Android应用程序UI硬件加速渲染环境初始
  9. Android(安卓)Architecture Component Ro
  10. 保存文件