一、介绍


Operator是CoreOS公司开发,用于扩展kubernetes API或特定应用程序的控制器,它用来创建、配置、管理复杂的有状态应用,例如数据库,监控系统。其中Prometheus-Operator就是其中一个重要的项目。

其架构图如下:

其中核心部分是Operator,它会去创建Prometheus、ServiceMonitor、AlertManager、PrometheusRule这4个CRD对象,然后会一直监控并维护这4个对象的状态。

  • Prometheus:作为Prometheus Server的抽象
  • ServiceMonitor:就是exporter的各种抽象
  • AlertManager:作为Prometheus AlertManager的抽象
  • PrometheusRule:实现报警规则的文件

上图中的 Service 和 ServiceMonitor 都是 Kubernetes 的资源,一个 ServiceMonitor 可以通过 labelSelector 的方式去匹配一类 Service,Prometheus 也可以通过 labelSelector 去匹配多个ServiceMonitor。

二、安装


注意集群版本的坑,自己先到Github上下载对应的版本。

我们使用源码来安装,首先克隆源码到本地:

# git clone https://github.com/coreos/kube-prometheus.git

我们进入kube-prometheus/manifests/setup,就可以直接创建CRD对象:

# cd kube-prometheus/manifests/setup# kubectl apply -f .

然后在上层目录创建资源清单:

# cd kube-prometheus/manifests# kubectl apply -f .

可以看到创建如下的CRD对象:

# kubectl get crd | grep coreosalertmanagers.monitoring.coreos.com     2019-12-02T03:03:37Zpodmonitors.monitoring.coreos.com       2019-12-02T03:03:37Zprometheuses.monitoring.coreos.com      2019-12-02T03:03:37Zprometheusrules.monitoring.coreos.com   2019-12-02T03:03:37Zservicemonitors.monitoring.coreos.com   2019-12-02T03:03:37Z

查看创建的pod:

# kubectl get pod -n monitoring NAME                                  READY   STATUS    RESTARTS   AGEalertmanager-main-0                   2/2     Running   0          2m37salertmanager-main-1                   2/2     Running   0          2m37salertmanager-main-2                   2/2     Running   0          2m37sgrafana-77978cbbdc-886cc              1/1     Running   0          2m46skube-state-metrics-7f6d7b46b4-vrs8t   3/3     Running   0          2m45snode-exporter-5552n                   2/2     Running   0          2m45snode-exporter-6snb7                   2/2     Running   0          2m45sprometheus-adapter-68698bc948-6s5f2   1/1     Running   0          2m45sprometheus-k8s-0                      3/3     Running   1          2m27sprometheus-k8s-1                      3/3     Running   1          2m27sprometheus-operator-6685db5c6-4tdhp   1/1     Running   0          2m52s

查看创建的Service:

# kubectl get svc -n monitoring NAME                    TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGEalertmanager-main       ClusterIP   10.68.97.247    <none>        9093/TCP                     3m51salertmanager-operated   ClusterIP   None            <none>        9093/TCP,9094/TCP,9094/UDP   3m41sgrafana                 ClusterIP   10.68.234.173   <none>        3000/TCP                     3m50skube-state-metrics      ClusterIP   None            <none>        8443/TCP,9443/TCP            3m50snode-exporter           ClusterIP   None            <none>        9100/TCP                     3m50sprometheus-adapter      ClusterIP   10.68.109.201   <none>        443/TCP                      3m50sprometheus-k8s          ClusterIP   10.68.9.232     <none>        9090/TCP                     3m50sprometheus-operated     ClusterIP   None            <none>        9090/TCP                     3m31sprometheus-operator     ClusterIP   None            <none>        8080/TCP                     3m57s

我们看到我们常用的prometheus和grafana都是clustorIP,我们要外部访问可以配置为NodePort类型或者用ingress。比如配置为ingress:
prometheus-ingress.yaml

apiVersion: extensions/v1beta1kind: Ingressmetadata:  name: prometheus-ingress  namespace: monitoring  annotations:    kubernetes.io/ingress.class: "traefik"spec:  rules:  - host: prometheus.joker.com    http:      paths:      - path:        backend:           serviceName: prometheus-k8s           servicePort: 9090

grafana-ingress.yaml

apiVersion: extensions/v1beta1kind: Ingressmetadata:  name: grafana-ingress  namespace: monitoring  annotations:    kubernetes.io/ingress.class: "traefik"spec:  rules:  - host: grafana.joker.com    http:      paths:      - path:        backend:           serviceName: grafana          servicePort: 3000

但是我们这里由于没有域名进行备案,我们就用NodePort类型。修改后如下:

# kubectl get svc -n monitoring NAME                    TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGEgrafana                 NodePort    10.68.234.173   <none>        3000:39807/TCP               3h1m                    3h1mprometheus-k8s          NodePort    10.68.9.232     <none>        9090:20547/TCP               3h1m

然后就可以正常在浏览器访问了。

三、配置


> 3.1、监控集群资源

我们可以看到大部分的配置都是正常的,只有两三个没有管理到对应的监控目标,比如 kube-controller-manager 和 kube-scheduler 这两个系统组件,这就和 ServiceMonitor 的定义有关系了,我们先来查看下 kube-scheduler 组件对应的 ServiceMonitor 资源的定义:(prometheus-serviceMonitorKubeScheduler.yaml)

apiVersion: monitoring.coreos.com/v1kind: ServiceMonitormetadata:  labels:    k8s-app: kube-scheduler  name: kube-scheduler  namespace: monitoringspec:  endpoints:  - interval: 30s # 每30s获取一次信息    port: http-metrics  # 对应service的端口名  jobLabel: k8s-app  namespaceSelector: # 表示去匹配某一命名空间中的service,如果想从所有的namespace中匹配用any: true    matchNames:    - kube-system  selector:  # 匹配的 Service 的labels,如果使用mathLabels,则下面的所有标签都匹配时才会匹配该service,如果使用matchExpressions,则至少匹配一个标签的service都会被选择    matchLabels:      k8s-app: kube-scheduler

上面是一个典型的 ServiceMonitor 资源文件的声明方式,上面我们通过selector.matchLabels在 kube-system 这个命名空间下面匹配具有k8s-app=kube-scheduler这样的 Service,但是我们系统中根本就没有对应的 Service,所以我们需要手动创建一个 Service:(prometheus-kubeSchedulerService.yaml)

apiVersion: v1kind: Servicemetadata:  namespace: kube-system  name: kube-scheduler  labels:    k8s-app: kube-schedulerspec:  selector:    component: kube-scheduler  ports:  - name: http-metrics    port: 10251    targetPort: 10251    protocol: TCP

10251是kube-scheduler组件 metrics 数据所在的端口,10252是kube-controller-manager组件的监控数据所在端口。

其中最重要的是上面 labels 和 selector 部分,labels 区域的配置必须和我们上面的 ServiceMonitor 对象中的 selector 保持一致,selector下面配置的是component=kube-scheduler,为什么会是这个 label 标签呢,我们可以去 describe 下 kube-scheduelr 这个 Pod:

$ kubectl describe pod kube-scheduler-master -n kube-systemName:         kube-scheduler-masterNamespace:    kube-systemNode:         master/10.151.30.57Start Time:   Sun, 05 Aug 2018 18:13:32 +0800Labels:       component=kube-scheduler              tier=control-plane......

我们可以看到这个 Pod 具有component=kube-scheduler和tier=control-plane这两个标签,而前面这个标签具有更唯一的特性,所以使用前面这个标签较好,这样上面创建的 Service 就可以和我们的 Pod 进行关联了,直接创建即可:

$ kubectl create -f prometheus-kubeSchedulerService.yaml$ kubectl get svc -n kube-system -l k8s-app=kube-schedulerNAME             TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)     AGEkube-scheduler   ClusterIP   10.102.119.231   <none>        10251/TCP   18m

创建完成后,隔一小会儿后去 prometheus 查看 targets 下面 kube-scheduler 的状态:

promethus kube-scheduler error
我们可以看到现在已经发现了 target,但是抓取数据结果出错了,这个错误是因为我们集群是使用 kubeadm 搭建的,其中 kube-scheduler 默认是绑定在127.0.0.1上面的,而上面我们这个地方是想通过节点的 IP 去访问,所以访问被拒绝了,我们只要把 kube-scheduler 绑定的地址更改成0.0.0.0即可满足要求,由于 kube-scheduler 是以静态 Pod 的形式运行在集群中的,所以我们只需要更改静态 Pod 目录下面对应的 YAML 文件即可:

$ ls /etc/kubernetes/manifests/etcd.yaml  kube-apiserver.yaml  kube-controller-manager.yaml  kube-scheduler.yaml

将 kube-scheduler.yaml 文件中-command的--address地址更改成0.0.0.0:

containers:- command:- kube-scheduler- --leader-elect=true- --kubeconfig=/etc/kubernetes/scheduler.conf- --address=0.0.0.0

修改完成后我们将该文件从当前文件夹中移除,隔一会儿再移回该目录,就可以自动更新了,然后再去看 prometheus 中 kube-scheduler 这个 target 是否已经正常了:

promethues-operator-kube-scheduler
大家可以按照上面的方法尝试去修复下 kube-controller-manager 组件的监控。

3.2、监控集群外资源

很多时候我们并不是把所有资源都部署在集群内的,经常有比如ectd,kube-scheduler等都部署在集群外。其监控流程和上面大致一样,唯一的区别就是在定义Service的时候,其EndPoints是需要我们自己去定义的。

3.2.1、监控kube-scheduler

(1)、定义Service和EndPoints
prometheus-KubeSchedulerService.yaml

apiVersion: v1kind: Servicemetadata:  name: kube-scheduler  namespace: kube-system  labels:    k8s-app: kube-schedulerspec:   type: ClusterIP  clusterIP: None  ports:  - name: http-metrics    port: 10251    targetPort: 10251    protocol: TCP---apiVersion: v1kind: Endpointsmetadata:  name: kube-scheduler  namespace: kube-system  labels:    k8s-app: kube-schedulersubsets:- addresses:  - ip: 172.16.0.33  ports:  - name: http-metrics    port: 10251    protocol: TCP

(2)、定义ServiceMonitor
prometheus-serviceMonitorKubeScheduler.yaml

apiVersion: monitoring.coreos.com/v1kind: ServiceMonitormetadata:  name: kube-scheduler  namespace: monitoring  labels:    k8s-app: kube-schedulerspec:  endpoints:  - interval: 30s    port: http-metrics  jobLabel: k8s-app  namespaceSelector:    matchNames:    - kube-system  selector:    matchLabels:      k8s-app: kube-scheduler

然后我们就可以看到其监控上了:

3.2.2、监控kube-controller-manager

(1)、配置Service和EndPoints,
prometheus-KubeControllerManagerService.yaml

apiVersion: v1kind: Servicemetadata:  name: kube-controller-manager  namespace: kube-system  labels:    k8s-app: kube-controller-managerspec:  type: ClusterIP  clusterIP: None  ports:  - name: http-metrics    port: 10252    targetPort: 10252    protocol: TCP---apiVersion: v1kind: Endpointsmetadata:  name: kube-controller-manager  namespace: kube-system  labels:    k8s-app: kube-controller-managersubsets:- addresses:  - ip: 172.16.0.33  ports:  - name: http-metrics    port: 10252    protocol: TCP

(2)、配置ServiceMonitor
prometheus-serviceMonitorKubeControllerManager.yaml

apiVersion: monitoring.coreos.com/v1kind: ServiceMonitormetadata:  labels:    k8s-app: kube-controller-manager  name: kube-controller-manager  namespace: monitoringspec:  endpoints:  - interval: 30s    metricRelabelings:    - action: drop      regex: etcd_(debugging|disk|request|server).*      sourceLabels:      - __name__    port: http-metrics  jobLabel: k8s-app  namespaceSelector:    matchNames:    - kube-system  selector:    matchLabels:      k8s-app: kube-controller-manager

3.2.3、监控etcd

很多情况下,我们的etcd都需要进行SSL认证的,所以首先需要将用到的证书保存到集群中去。
(根据自己集群证书的位置修改)

kubectl -n monitoring create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/healthcheck-client.crt --from-file=/etc/kubernetes/pki/etcd/healthcheck-client.key --from-file=/etc/kubernetes/pki/etcd/ca.crt

然后将上面创建的 etcd-certs 对象配置到 prometheus 资源对象中,直接更新 prometheus 资源对象即可:

#  kubectl edit prometheus k8s -n monitoring

添加如下的 secrets 属性:

nodeSelector:  beta.kubernetes.io/os: linuxreplicas: 2secrets:- etcd-certs

更新完成后,我们就可以在 Prometheus 的 Pod 中获取到上面创建的 etcd 证书文件了,具体的路径我们可以进入 Pod 中查看:

# kubectl exec -it prometheus-k8s-0 -n monitoring -- /bin/shDefaulting container name to prometheus.Use 'kubectl describe pod/prometheus-k8s-0 -n monitoring' to see all of the containers in this pod./prometheus $  ls /etc/prometheus/secrets/etcd-certs/ca.crt      healthcheck-client.crt  healthcheck-client.key/prometheus $ 

(1)、创建ServiceMonitor
prometheus-serviceMonitorEtcd.yamlns

apiVersion: monitoring.coreos.com/v1kind: ServiceMonitormetadata:  name: k8s-etcd  namespace: monitoring  labels:    k8s-app: k8s-etcdspec:  jobLabel: k8s-app  endpoints:  - port: port    interval: 30s    scheme: https    tlsConfig:      caFile: /etc/prometheus/secrets/etcd-certs/ca.crt      certFile: /etc/prometheus/secrets/etcd-certs/healthcheck-client.crt      keyFile: /etc/prometheus/secrets/etcd-certs/healthcheck-client.key      insecureSkipVerify: true  selector:    matchLabels:      k8s-app: k8s-etcd  namespaceSelector:    matchNames:    - kube-system

上面我们在 monitoring 命名空间下面创建了名为 k8s-etcd 的 ServiceMonitor 对象,基本属性和前面章节中的一致,匹配 kube-system 这个命名空间下面的具有 k8s-app=k8s-etcd 这个 label 标签的 Service,jobLabel 表示用于检索 job 任务名称的标签,和前面不太一样的地方是 endpoints 属性的写法,配置上访问 etcd 的相关证书,endpoints 属性下面可以配置很多抓取的参数,比如 relabel、proxyUrl,tlsConfig 表示用于配置抓取监控数据端点的 tls 认证,由于证书 serverName 和 etcd 中签发的可能不匹配,所以加上了 insecureSkipVerify=true.

然后创建这个配置清单:

# kubectl apply -f prometheus-serviceMonitorEtcd.yaml

(2)、创建Service

apiVersion: v1kind: Servicemetadata:  name: k8s-etcd  namespace: kube-system  labels:    k8s-app: k8s-etcdspec:  type: ClusterIP  clusterIP: None  ports:  - name: port    port: 2379    protocol: TCP---apiVersion: v1kind: Endpointsmetadata:  name: k8s-etcd  namespace: kube-system  labels:    k8s-app: k8s-etcdsubsets:- addresses:  - ip: 172.16.0.33  ports:  - name: port    port: 2379    protocol: TCP


然后在Grafana中导入3070的面板。

3.3、配置报警规则Rule

我们创建一个 PrometheusRule 资源对象后,会自动在上面的 prometheus-k8s-rulefiles-0 目录下面生成一个对应的-.yaml文件,所以如果以后我们需要自定义一个报警选项的话,只需要定义一个 PrometheusRule 资源对象即可,但是要求这个资源对象必须得有 prometheus=k8s 和 role=alert-rules 这一对标签。
如下配置Ectd报警规则:
prometheus-etcdRule.yaml

apiVersion: monitoring.coreos.com/v1kind: PrometheusRulemetadata:  name: etcd-rules  namespace: monitoring  labels:    prometheus: k8s    role: alert-rulesspec:  groups:  - name: etcd    rules:    - alert: EtcdClusterUnavailable      annotations:        summary: etcd cluster small        description: If one more etcd peer goes down the cluster will be unavailable      expr: |        count(up{job="etcd"} == 0) > (count(up{job="etcd"}) / 2 - 1)      for: 3m      labels:        severity: critical

然后我们创建这个配置清单:

# kubectl apply -f prometheus-etcdRule.yamlprometheusrule.monitoring.coreos.com/etcd-rules created

然后我们刷新页面,就可以看到已经生效了

3.4、配置报警

首先我们将 alertmanager-main 这个 Service 改为 NodePort 类型的 Service,修改完成后我们可以在页面上的 status 路径下面查看 AlertManager 的配置信息:

# kubectl get svc -n monitoring NAME                    TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGEalertmanager-main       NodePort    10.68.97.247    <none>        9093:21936/TCP               5h31m

然后在浏览器查看:

这些配置信息实际上是来自于我们之前在kube-prometheus/manifests目录下面创建的 alertmanager-secret.yaml 文件:

apiVersion: v1data:  alertmanager.yaml: Imdsb2JhbCI6CiAgInJlc29sdmVfdGltZW91dCI6ICI1bSIKInJlY2VpdmVycyI6Ci0gIm5hbWUiOiAibnVsbCIKInJvdXRlIjoKICAiZ3JvdXBfYnkiOgogIC0gImpvYiIKICAiZ3JvdXBfaW50ZXJ2YWwiOiAiNW0iCiAgImdyb3VwX3dhaXQiOiAiMzBzIgogICJyZWNlaXZlciI6ICJudWxsIgogICJyZXBlYXRfaW50ZXJ2YWwiOiAiMTJoIgogICJyb3V0ZXMiOgogIC0gIm1hdGNoIjoKICAgICAgImFsZXJ0bmFtZSI6ICJXYXRjaGRvZyIKICAgICJyZWNlaXZlciI6ICJudWxsIg==kind: Secretmetadata:  name: alertmanager-main  namespace: monitoringtype: Opaque

可以将 alertmanager.yaml 对应的 value 值做一个 base64 解码:

# echo "Imdsb2JhbCI6CiAgInJlc29sdmVfdGltZW91dCI6ICI1bSIKInJlY2VpdmVycyI6Ci0gIm5hbWUiOiAibnVsbCIKInJvdXRlIjoKICAiZ3JvdXBfYnkiOgogIC0gImpvYiIKICAiZ3JvdXBfaW50ZXJ2YWwiOiAiNW0iCiAgImdyb3VwX3dhaXQiOiAiMzBzIgogICJyZWNlaXZlciI6ICJudWxsIgogICJyZXBlYXRfaW50ZXJ2YWwiOiAiMTJoIgogICJyb3V0ZXMiOgogIC0gIm1hdGNoIjoKICAgICAgImFsZXJ0bmFtZSI6ICJXYXRjaGRvZyIKICAgICJyZWNlaXZlciI6ICJudWxsIg==" | base64 -d"global":  "resolve_timeout": "5m""receivers":- "name": "null""route":  "group_by":  - "job"  "group_interval": "5m"  "group_wait": "30s"  "receiver": "null"  "repeat_interval": "12h"  "routes":  - "match":      "alertname": "Watchdog"    "receiver": "null"

可以看到上面的内容和我们在网页上查到的是一致的。
如果要配置报警媒介,就可以修改这个模板:
alertmanager.yaml

global:  resolve_timeout: 5m  smtp_smarthost: 'smtp.163.com:465'  smtp_from: 'fmbankops@163.com'  smtp_auth_username: 'fmbankops@163.com'  smtp_auth_password: '<邮箱密码>'  smtp_hello: '163.com'  smtp_require_tls: falseroute:  group_by: ['job', 'severity']  group_wait: 30s  group_interval: 5m  repeat_interval: 12h  receiver: default  routes:  - receiver: webhook    match:      alertname: CoreDNSDownreceivers:- name: 'default'  email_configs:  - to: '517554016@qq.com'    send_resolved: true- name: 'webhook'  webhook_configs:  - url: 'http://dingtalk-hook.kube-ops:5000'   # 这是我们自定义的webhook    send_resolved: true

然后我们更新secret对象:

# 先将之前的 secret 对象删除$ kubectl delete secret alertmanager-main -n monitoringsecret "alertmanager-main" deleted$ kubectl create secret generic alertmanager-main --from-file=alertmanager.yaml -n monitoringsecret "alertmanager-main" created

然后就会收到报警信息:

四、高级配置


4.1、自动发现规则配置

我们在实际应用中会部署非常多的service和pod,如果要一个一个手动的添加监控将会是一个非常重复,浪费时间的工作,这时候就需要使用自动发现机制。我们在手动搭建Prometheus的过程中曾配置过自动发现service,其主要的配置文件如下:

- job_name: 'kubernetes-service-endpoints'  kubernetes_sd_configs:  - role: endpoints  relabel_configs:  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]    action: keep    regex: true  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]    action: replace    target_label: __scheme__    regex: (https?)  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]    action: replace    target_label: __metrics_path__    regex: (.+)  - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]    action: replace    target_label: __address__    regex: ([^:]+)(?::\d+)?;(\d+)    replacement: $1:$2  - action: labelmap    regex: __meta_kubernetes_service_label_(.+)  - source_labels: [__meta_kubernetes_namespace]    action: replace    target_label: kubernetes_namespace  - source_labels: [__meta_kubernetes_service_name]    action: replace    target_label: kubernetes_name

要想自动被发现,只需要在service的配置清单中加上annotations: prometheus.io/scrape=true。
我们将上面的文件保存为prometheus-additional.yaml,然后用这个文件创建一个secret。

# kubectl -n monitoring create secret generic additional-config --from-file=prometheus-additional.yaml secret/additional-config created

然后我们在prometheus的配置清单中添加这个配置:
cat prometheus-prometheus.yaml

apiVersion: monitoring.coreos.com/v1kind: Prometheusmetadata:  labels:    prometheus: k8s  name: k8s  namespace: monitoringspec:  alerting:    alertmanagers:    - name: alertmanager-main      namespace: monitoring      port: web  baseImage: quay.io/prometheus/prometheus  nodeSelector:    kubernetes.io/os: linux  podMonitorSelector: {}  replicas: 2  resources:    requests:      memory: 400Mi  ruleSelector:    matchLabels:      prometheus: k8s      role: alert-rules  securityContext:    fsGroup: 2000    runAsNonRoot: true    runAsUser: 1000  additionalScrapeConfigs:    name: additional-config    key: prometheus-additional.yaml  serviceAccountName: prometheus-k8s  serviceMonitorNamespaceSelector: {}  serviceMonitorSelector: {}  version: v2.11.0

然后更新一下prometheus的配置:

# kubectl apply -f prometheus-prometheus.yaml prometheus.monitoring.coreos.com/k8s configured

然后我们查看prometheus的日志,发现很多错误:

# kubectl logs -f prometheus-k8s-0 prometheus -n monitoring

从日志可以看出,其提示的是权限问题,在kubernetes中涉及到权限问题一般就是RBAC中配置问题,我们查看prometheus的配置清单发现其使用了一个prometheus-k8s的ServiceAccount:

而其绑定的是一个叫prometheus-k8s的ClusterRole:

# kubectl get clusterrole prometheus-k8s -n monitoring  -o yamlapiVersion: rbac.authorization.k8s.io/v1kind: ClusterRolemetadata:  annotations:    kubectl.kubernetes.io/last-applied-configuration: |      {"apiVersion":"rbac.authorization.k8s.io/v1","kind":"ClusterRole","metadata":{"annotations":{},"name":"prometheus-k8s"},"rules":[{"apiGroups":[""],"resources":["nodes/metrics"],"verbs":["get"]},{"nonResourceURLs":["/metrics"],"verbs":["get"]}]}  creationTimestamp: "2019-12-02T03:03:44Z"  name: prometheus-k8s  resourceVersion: "1128592"  selfLink: /apis/rbac.authorization.k8s.io/v1/clusterroles/prometheus-k8s  uid: 4f87ca47-7769-432b-b96a-1b826b28003drules:- apiGroups:  - ""  resources:  - nodes/metrics  verbs:  - get- nonResourceURLs:  - /metrics  verbs:  - get

从上面可以知道,这个clusterrole并没有service和pod的一些相关权限。接下来我们修改这个clusterrole。
prometheus-clusterRole.yaml

apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRolemetadata:  name: prometheus-k8srules:- apiGroups:  - ""  resources:  - nodes/metrics  - configmaps  verbs:  - get- apiGroups:  - ""  resources:  - nodes  - pods  - services  - endpoints  - nodes/proxy  verbs:  - get  - list  - watch- nonResourceURLs:  - /metrics  verbs:  - get

然后我们更新这个资源清单:

# kubectl apply -f prometheus-clusterRole.yamlclusterrole.rbac.authorization.k8s.io/prometheus-k8s configured

然后等待一段时间我们可以发现自动发现成功。

提示:配置自动发现,首先annotations里需要配置prometheus.io/scrape=true,其次你的应用要有exporter去收集信息,比如我们如下的redis配置:

apiVersion: extensions/v1beta1kind: Deploymentmetadata:  name: redis  namespace: kube-opsspec:  template:    metadata:      annotations:        prometheus.io/scrape: "true"        prometheus.io/port: "9121"      labels:        app: redis    spec:      containers:      - name: redis        image: redis:4        resources:          requests:            cpu: 100m            memory: 100Mi        ports:        - containerPort: 6379      - name: redis-exporter        image: oliver006/redis_exporter:latest        resources:          requests:            cpu: 100m            memory: 100Mi        ports:        - containerPort: 9121---kind: ServiceapiVersion: v1metadata:  name: redis  namespace: kube-ops  annotations:    prometheus.io/scrape: "true"    prometheus.io/port: "9121"spec:  selector:    app: redis  ports:  - name: redis    port: 6379    targetPort: 6379  - name: prom    port: 9121    targetPort: 9121

4.2、数据持久化配置

如果我们直接git clone下来的,不做任何修改,Prometheus虽然使用的是statefuleSet,但是其用的存储卷是emptyDir,在删除Pod或者重建Pod,原始数据是会丢失的。所以在真实环境我们需要对其进行持久化,首先创建storageClass,如果是用NFS做持久化,详见第四章持久化存储中的storageClass部分。我们这里依然用的NFS做持久化。

创建StorageClass:
prometheus-storage.yaml

apiVersion: storage.k8s.io/v1kind: StorageClassmetadata:  name: prometheus-storageprovisioner: rookieops/nfs

其中provisioner需要指定我们在创建nfs-client-provisioner中指定的名字,不能随意修改。

配置prometheus的配置清单:
prometheus-prometheus.yaml

apiVersion: monitoring.coreos.com/v1kind: Prometheusmetadata:  labels:    prometheus: k8s  name: k8s  namespace: monitoringspec:  alerting:    alertmanagers:    - name: alertmanager-main      namespace: monitoring      port: web  storage:    volumeClaimTemplate:      spec:        storageClassName: prometheus-storage        resources:          requests:            storage: 20Gi  baseImage: quay.io/prometheus/prometheus  nodeSelector:    kubernetes.io/os: linux  podMonitorSelector: {}  replicas: 2  resources:    requests:      memory: 400Mi  ruleSelector:    matchLabels:      prometheus: k8s      role: alert-rules  securityContext:    fsGroup: 2000    runAsNonRoot: true    runAsUser: 1000  additionalScrapeConfigs:    name: additional-config    key: prometheus-additional.yaml  serviceAccountName: prometheus-k8s  serviceMonitorNamespaceSelector: {}  serviceMonitorSelector: {}  version: v2.11.0

然后就可以正常使用持久化了,建议在部署之初就做更改。


©著作权归作者所有:来自51CTO博客作者mb5ff97f7b72697的原创作品,如需转载,请注明出处,否则将追究法律责任

更多相关文章

  1. Prometheus配置企业微信告警
  2. Weblogic中间件创建文件权限问题解决
  3. MPLS系列之二:MPLS *** 静态路由、RIP、EIGRP【包括配置 分析控制
  4. 华为交换机配置基于IP地址划分VLAN
  5. 华为防火墙双机热备(VRRP)的配置实例
  6. 谈谈运维标准化
  7. 华为路由交换技术:VRRP-虚拟网关冗余协议配置
  8. 华为配置基于MAC地址划分VLAN
  9. 华为交换机口令恢复和重置密码

随机推荐

  1. android 内存管理
  2. android4.0自定义标题报错 -----断点记录
  3. Android 的大牛的博客 提供给大家参考
  4. JavaCV & Android
  5. Android 文件夹命名规范 国际化资源
  6. Android脚本环境
  7. Android中设置搜素联系人的布局
  8. Android版本号对应API、版本名称、NDK版
  9. android studio 各种问题 应该能帮助到你
  10. 最近总结的android疑惑(三)