从2001年DDR内存面世以来发展到2019年的今天,已经走过了DDR、DDR2、DDR3、DDR4四个大的规格时代了(DDR5现在也出来了)。内存的工作频率也从DDR时代的266MHz进化到了今天的3200MHz。这个频率在操作系统里叫Speed、在内存术语里叫等效频率、或干脆直接简称频率。这个频率越高,每秒钟内存IO的吞吐量越大。但其实内存有一个最最基本的频率叫核心频率,是实际内存电路的工作时的一个振荡频率。它是内存工作的基础,很大程度上会影响内存的IO延迟。我今天想给大家揭开另外一面,这个叫核心频率的东东其实在最近的18年里,基本上就没有什么太大的进步。

内存Speed

在Linux上可以查看到你机器上内存的Speed。

# dmidecode | grep -P -A16 "Memory Device"Memory DeviceArray Handle: 0x0009Error Information Handle: Not ProvidedTotal Width: 72 bitsData Width: 64 bitsSize: 8192 MBForm Factor: DIMMSet: NoneLocator: DIMM02Bank Locator: BANK02Type: OtherType Detail: UnknownSpeed: 1067 MHzManufacturer: MicronSerial Number: 65ED91DCAsset Tag: UnknownPart Number: 36KSF1G72PZ-1G4M1......


上述命令可以看出每一个插槽上内存物理设备的情况,由于结果太长我只抽取了其中一个内存的信息列了出来。对于我们开发者来说,其中有两个数据比较关键。

  • Speed: 1067 MHz:每秒能进行内存数据传输的速度,

  • Data Width: 64 bits:内存工作一次传输的数据宽度

我的机器上所有的内存条的Speed都是1067(大家别笑话,因为我的测试机器是线上过保淘汰下来的机器,所以老了一点点)。把Data Width和Speed相乘后得到的就是数据带宽了。我们把历史上各个阶段的内存的Speed和带宽汇总了一下,如下图。

图1 各代内存频率

内存背后的秘密-核心频率

通过Linux我们只看到了内存的一个Speed,它是数据传输的频率。这个频率又叫Data Speed,或等效频率。各个商家在内存的销售页面上也把这个频率标在特别明显的位置,提醒消费者他家的内存有多快多快。但其实从内存条的技术参数上来讲,有个最为重要的频率,是核心频率,它是内存电路的震荡频率,是内存一切工作的基石

我们来看一下各代内存的更全面详细的数据。

图2 各代内存的核心频率与技术提升手段

我汇总了从SDR时代,一直到目前主流的DDR4的内存的频率表对比。大家可以看到核心频率已经多年没有实质性进步了,这是受物理材料的极限限制,内存的核心频率一直在133MHz~200MHz之间徘徊。我们所看到的内存Speed是在这个核心频率的基础上,通过各种技术手段放大出来的。之所以我们感觉内存在越来越快,就是放大技术手段在不断进步而已。

  • SDR时代:在最古老的SDR(Single Data Rate SDRAM)年代里,一个时钟脉冲只能在脉冲上沿时传输数据,所以也叫单倍数据传输率内存。这个时期内存的提升方法就是提升内存电路的核心频率。

  • DDR时代:但是内存制造商们发现核心频率到了200MHz再提升的话,难度就很大了。所以在电路时钟周期内预取2bit,输出的时候就在上升期和下降期各传输一次数据。所以核心频率不变的情况下,Speed(等效频率)就翻倍了。

  • DDR2时代:同样是在上下沿各传一次数据,但将Prefech提升为4,每个电路周期一次读取4bit。所以DDR2的Speed(等效频率)就达到了核心频率的4倍。

  • DDR3时代:同样也是上下沿各传一次数据,进一步将Prefect提升为8。所以DDR3的等效频率可以达到核心频率的8倍。

  • DDR4时代:这时预取的提升已经非常困难,所以和DDR3一样,Prefech仍然为8。内存制造商们又另辟蹊径,提出了Bank Group设计。允许各个Bank Group具备独立启动操作读、写等动作特性。所以等效频率可以提升到核心频率的16倍。

内存还有个概念叫IO频率、也叫时钟频率。简单理解为将DDR内存的Speed频率除以2,就是内存的IO频率。这个必须和CPU的外频相匹配才能工作。例如对于DDR3来说,假如核心频率133Mhz的内存工作频率下,匹配533MHz的CPU外频,其IO频率就是533Mhz。数据传输因为上下沿都可以传,所以是核心频率的8倍,也就是1066MHz。

我曾试图在Linux下找到能查看核心频率和IO频率的命令,但是没有找到,在售的各种内存条似乎也很少会提及它。但我们是IT从业人员,非普通用户。因此我觉得大家有必要来了解这个原理。(事实上,这两个频率会影响后面讨论的内存的延迟参数,而延迟参数又决定了内存的真正性能)

汇总一句话,内存真正的工作频率是核心频率,时钟频率和数据频率都是在核心频率的基础上,通过技术手段放大出来的。内存越新,放大的倍数越多。但其实这些放大手段都有一些局限性。比如你的内存数据存储并不连续,这时候DDR2、DDR3的数据预取对你帮助并不大。再比如你的进程数据都存在一个Bank Group里,你的进程内存IO就根本不会达到DDR4厂家宣传的速度。

内存延迟

除了频率以外,内存还有几个比较重要的参数,但是同样在Linux里没有找到查看的命令。内存的销售页面想找到这几个参数也不是特别容易。

所有的内存条都有CL-tRCD-tRP-tRAS四个参数。其中最重要的是CL-tRCD-tRP这三个参数,只要你费点劲,所有的在售内存你都能找到这3个值。例如经典的DDR3-1066、DDR3-1333及DDR3-1600的CL值分别为7-7-7、8-8-8及9-9-9。现在京东上一条比较流行的台式机内存金士顿(Kingston)DDR4 2400 8G,其时序是17-17-17。

第四个参数有时候会被省略。原因有二,第一:现在的开发者不需要直接和内存打交道,而操作系统呢又做的比较内存友好,很少会有这个开销真正发生。第二,这个开销的值要比其它的值大很多,实在不太好看。商家为了内存能多卖一些,干脆就避而不谈了。

好了,问题来了。为什么内存越进步,延迟周期反而会变大了呢?

这就是因为延迟周期使用延迟时间除以内存Speed算出来的。这其实根本就不科学,最科学的办法应该是用延迟时间来评估。延迟时间很大程度上是受内存的核心频率的制约的。而这些年核心频率又基本上没有进步,所以延迟时间也不会有实质的降低。内存的制造商们又为了频率数据好看,能多卖些内存,非得采用Speed作为主周期来用。导致在用这个周期一衡量,貌似延迟周期就越来越大了。

今天就带大家了解到这里,后面我会用实验来让你理解你的内存的实际延时。


©著作权归作者所有:来自51CTO博客作者mb5fd86a050ef28的原创作品,如需转载,请注明出处,否则将追究法律责任

更多相关文章

  1. 一次内存性能提升的项目实践
  2. 开发内功修炼内存篇汇总
  3. 带你深入理解内存对齐最底层原理
  4. 挑战Redis单实例内存最大极限,“遭遇”NUMA陷阱!
  5. C语言中的指针
  6. 败家玩意儿!Redis 竟然浪费了这么多内存!
  7. Flink State 最佳实践
  8. Java堆外内存排查小结
  9. Linux压力测试软件Stress使用指南

随机推荐

  1. php日期格式化方法详解
  2. PHP实现文件上传下载实例详细讲解
  3. php排序函数详细讲解(附实例)
  4. PHP魔术常量、魔术函数、预定义常量详细
  5. php安全问题思考
  6. PHP——命名空间(namespace)使用详细介绍
  7. mac下多个php版本切换(可操作版)
  8. TP5框架下MySQL通过LOAD DATA INFILE批量
  9. 关于PHP中闭包的详细讲解(附详细实例)
  10. 关于Https原理的个人理解分享