下面由golang教程栏目给大家介绍golang中Context的使用场景,希望对需要的朋友有所帮助!

golang中Context的使用场景

context在Go1.7之后就进入标准库中了。它主要的用处如果用一句话来说,是在于控制goroutine的生命周期。当一个计算任务被goroutine承接了之后,由于某种原因(超时,或者强制退出)我们希望中止这个goroutine的计算任务,那么就用得到这个Context了。

本文主要来盘一盘golang中context的一些使用场景:

场景一:RPC调用

在主goroutine上有4个RPC,RPC2/3/4是并行请求的,我们这里希望在RPC2请求失败之后,直接返回错误,并且让RPC3/4停止继续计算。这个时候,就使用的到Context。

这个的具体实现如下面的代码。

package mainimport ("context""sync""github.com/pkg/errors")func Rpc(ctx context.Context, url string) error {result := make(chan int)err := make(chan error)go func() {// 进行RPC调用,并且返回是否成功,成功通过result传递成功信息,错误通过error传递错误信息isSuccess := trueif isSuccess {result <- 1} else {err <- errors.New("some error happen")}}()select {case <- ctx.Done():// 其他RPC调用调用失败return ctx.Err()case e := <- err:// 本RPC调用失败,返回错误信息return ecase <- result:// 本RPC调用成功,不返回错误信息return nil}}func main() {ctx, cancel := context.WithCancel(context.Background())// RPC1调用err := Rpc(ctx, "http://rpc_1_url")if err != nil {return}wg := sync.WaitGroup{}// RPC2调用wg.Add(1)go func(){defer wg.Done()err := Rpc(ctx, "http://rpc_2_url")if err != nil {cancel()}}()// RPC3调用wg.Add(1)go func(){defer wg.Done()err := Rpc(ctx, "http://rpc_3_url")if err != nil {cancel()}}()// RPC4调用wg.Add(1)go func(){defer wg.Done()err := Rpc(ctx, "http://rpc_4_url")if err != nil {cancel()}}()wg.Wait()}

当然我这里使用了waitGroup来保证main函数在所有RPC调用完成之后才退出。

在Rpc函数中,第一个参数是一个CancelContext, 这个Context形象的说,就是一个传话筒,在创建CancelContext的时候,返回了一个听声器(ctx)和话筒(cancel函数)。所有的goroutine都拿着这个听声器(ctx),当主goroutine想要告诉所有goroutine要结束的时候,通过cancel函数把结束的信息告诉给所有的goroutine。当然所有的goroutine都需要内置处理这个听声器结束信号的逻辑(ctx->Done())。我们可以看Rpc函数内部,通过一个select来判断ctx的done和当前的rpc调用哪个先结束。

这个waitGroup和其中一个RPC调用就通知所有RPC的逻辑,其实有一个包已经帮我们做好了。errorGroup。具体这个errorGroup包的使用可以看这个包的test例子。

有人可能会担心我们这里的cancel()会被多次调用,context包的cancel调用是幂等的。可以放心多次调用。

我们这里不妨品一下,这里的Rpc函数,实际上我们的这个例子里面是一个“阻塞式”的请求,这个请求如果是使用http.Get或者http.Post来实现,实际上Rpc函数的Goroutine结束了,内部的那个实际的http.Get却没有结束。所以,需要理解下,这里的函数最好是“非阻塞”的,比如是http.Do,然后可以通过某种方式进行中断。比如像这篇文章Cancel http.Request using Context中的这个例子:

func httpRequest(  ctx context.Context,  client *http.Client,  req *http.Request,  respChan chan []byte,  errChan chan error) {  req = req.WithContext(ctx)  tr := &http.Transport{}  client.Transport = tr  go func() {    resp, err := client.Do(req)    if err != nil {      errChan <- err    }    if resp != nil {      defer resp.Body.Close()      respData, err := ioutil.ReadAll(resp.Body)      if err != nil {        errChan <- err      }      respChan <- respData    } else {      errChan <- errors.New("HTTP request failed")    }  }()  for {    select {    case <-ctx.Done():      tr.CancelRequest(req)      errChan <- errors.New("HTTP request cancelled")      return    case <-errChan:      tr.CancelRequest(req)      return    }  }}

它使用了http.Client.Do,然后接收到ctx.Done的时候,通过调用transport.CancelRequest来进行结束。
我们还可以参考net/dail/DialContext
换而言之,如果你希望你实现的包是“可中止/可控制”的,那么你在你包实现的函数里面,最好是能接收一个Context函数,并且处理了Context.Done。

场景二:PipeLine

pipeline模式就是流水线模型,流水线上的几个工人,有n个产品,一个一个产品进行组装。其实pipeline模型的实现和Context并无关系,没有context我们也能用chan实现pipeline模型。但是对于整条流水线的控制,则是需要使用上Context的。这篇文章Pipeline Patterns in Go的例子是非常好的说明。这里就大致对这个代码进行下说明。

runSimplePipeline的流水线工人有三个,lineListSource负责将参数一个个分割进行传输,lineParser负责将字符串处理成int64,sink根据具体的值判断这个数据是否可用。他们所有的返回值基本上都有两个chan,一个用于传递数据,一个用于传递错误。(<-chan string, <-chan error)输入基本上也都有两个值,一个是Context,用于传声控制的,一个是(in <-chan)输入产品的。

我们可以看到,这三个工人的具体函数里面,都使用switch处理了case <-ctx.Done()。这个就是生产线上的命令控制。

func lineParser(ctx context.Context, base int, in <-chan string) (<-chan int64, <-chan error, error) {...go func() {defer close(out)defer close(errc)for line := range in {n, err := strconv.ParseInt(line, base, 64)if err != nil {errc <- errreturn}select {case out <- n:case <-ctx.Done():return}}}()return out, errc, nil}

场景三:超时请求

我们发送RPC请求的时候,往往希望对这个请求进行一个超时的限制。当一个RPC请求超过10s的请求,自动断开。当然我们使用CancelContext,也能实现这个功能(开启一个新的goroutine,这个goroutine拿着cancel函数,当时间到了,就调用cancel函数)。

鉴于这个需求是非常常见的,context包也实现了这个需求:timerCtx。具体实例化的方法是 WithDeadline 和 WithTimeout。

具体的timerCtx里面的逻辑也就是通过time.AfterFunc来调用ctx.cancel的。

官方的例子:

package mainimport (    "context"    "fmt"    "time")func main() {    ctx, cancel := context.WithTimeout(context.Background(), 50*time.Millisecond)    defer cancel()    select {    case <-time.After(1 * time.Second):        fmt.Println("overslept")    case <-ctx.Done():        fmt.Println(ctx.Err()) // prints "context deadline exceeded"    }}

在http的客户端里面加上timeout也是一个常见的办法

uri := "https://httpbin.org/delay/3"req, err := http.NewRequest("GET", uri, nil)if err != nil {log.Fatalf("http.NewRequest() failed with '%s'\n", err)}ctx, _ := context.WithTimeout(context.Background(), time.Millisecond*100)req = req.WithContext(ctx)resp, err := http.DefaultClient.Do(req)if err != nil {log.Fatalf("http.DefaultClient.Do() failed with:\n'%s'\n", err)}defer resp.Body.Close()

在http服务端设置一个timeout如何做呢?

package mainimport ("net/http""time")func test(w http.ResponseWriter, r *http.Request) {time.Sleep(20 * time.Second)w.Write([]byte("test"))}func main() {http.HandleFunc("/", test)timeoutHandler := http.TimeoutHandler(http.DefaultServeMux, 5 * time.Second, "timeout")http.ListenAndServe(":8080", timeoutHandler)}

我们看看TimeoutHandler的内部,本质上也是通过context.WithTimeout来做处理。

func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {  ...ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt)defer cancelCtx()...go func() {    ...h.handler.ServeHTTP(tw, r)}()select {    ...case <-ctx.Done():...}}

场景四:HTTP服务器的request互相传递数据

context还提供了valueCtx的数据结构。

这个valueCtx最经常使用的场景就是在一个http服务器中,在request中传递一个特定值,比如有一个中间件,做cookie验证,然后把验证后的用户名存放在request中。

我们可以看到,官方的request里面是包含了Context的,并且提供了WithContext的方法进行context的替换。

package mainimport ("net/http""context")type FooKey stringvar UserName = FooKey("user-name")var UserId = FooKey("user-id")func foo(next http.HandlerFunc) http.HandlerFunc {return func(w http.ResponseWriter, r *http.Request) {ctx := context.WithValue(r.Context(), UserId, "1")ctx2 := context.WithValue(ctx, UserName, "yejianfeng")next(w, r.WithContext(ctx2))}}func GetUserName(context context.Context) string {if ret, ok := context.Value(UserName).(string); ok {return ret}return ""}func GetUserId(context context.Context) string {if ret, ok := context.Value(UserId).(string); ok {return ret}return ""}func test(w http.ResponseWriter, r *http.Request) {w.Write([]byte("welcome: "))w.Write([]byte(GetUserId(r.Context())))w.Write([]byte(" "))w.Write([]byte(GetUserName(r.Context())))}func main() {http.Handle("/", foo(test))http.ListenAndServe(":8080", nil)}

在使用ValueCtx的时候需要注意一点,这里的key不应该设置成为普通的String或者Int类型,为了防止不同的中间件对这个key的覆盖。最好的情况是每个中间件使用一个自定义的key类型,比如这里的FooKey,而且获取Value的逻辑尽量也抽取出来作为一个函数,放在这个middleware的同包中。这样,就会有效避免不同包设置相同的key的冲突问题了。

更多相关文章

  1. go-carbon1.2.0发布了!完善优化对ORM的多场景支持
  2. 详解Golang中函数作为值与类型
  3. go语言中普通函数与方法的区别是什么?
  4. 详解Go 中方法与函数的区别
  5. 关于golang封装一个bash函数,用于执行bash命令
  6. 总结Golang实现PHP常用函数
  7. PHP扩展之XML操作(三)——XML解析器使用及相关函数
  8. 实例简析XPath串函数和XSLT
  9. XmlTextWriter函数定义与用法汇总

随机推荐

  1. android 随手记-画虚线
  2. Android 允许权限
  3. android中文字跑马灯效果
  4. Android日期时间格式国际化
  5. android 颜色值 xml
  6. Android Property System
  7. 【Android UI】色板
  8. AndroidщАЪш┐ЗViewPagerхоЮчО
  9. 在eclipse中查看Android(安卓)SDK源代码
  10. 2013.10.14 “?android ”